Confocal Microscopy Reveals Local SR Calcium Release in Voltage-Clamped Cardiac Cells

Author(s):  
Withrow Gil Wier
1992 ◽  
Vol 262 (3) ◽  
pp. C731-C742 ◽  
Author(s):  
D. A. Williams ◽  
L. M. Delbridge ◽  
S. H. Cody ◽  
P. J. Harris ◽  
T. O. Morgan

Laser scanning confocal microscopy of the Ca(2+)-sensitive fluorophore fluo-3 has been used to investigate spontaneous and propagated calcium release at high temporal and spatial resolution in enzymatically dispersed rat cardiomyocytes. Waves of fluorescence which propagated throughout the cytosol were evident in spontaneously contracting cardiac cells containing fluo-3, but not in cells containing Ca(2+)-insensitive fluorophores [2',7'-bis (carboxyethyl)-5,6-carboxyfluorescein, SNARF-1, rhodamine-123, or tetramethylrhodamine-labeled dextran]. These waves represent localized areas of elevated [Ca2+] [975 +/- 13 (SE) nM, range 800-1,500 nM; n = 16 cells]. Ca2+ waves were initiated by the spontaneous release of Ca2+ from the sarcoplasmic reticulum (SR) and propagated through cells at rates of 50-150 microns/s. Ca2+ waves were usually initiated at the cell ends, but multiple and variable initiation foci were observed in some cells. Where waves intersected within a single cell there was extinction of wave propagation, confirming the SR as the direct source of Ca2+ and revealing a refractory period in SR Ca2+ release. In some cells high-frequency Ca2+ waves lead to synchronized elevation of [Ca2+] throughout the entire cytosol and within the time period associated with cell depolarization. These observations support the hypothesis that some cardiac arrhythmias are initiated by spontaneous and propagated Ca2+ release and involve subsequent depolarization, global elevation of intracellular [Ca2+], and cell contraction.


1989 ◽  
Vol 93 (5) ◽  
pp. 963-977 ◽  
Author(s):  
P H Backx ◽  
P P de Tombe ◽  
J H Van Deen ◽  
B J Mulder ◽  
H E ter Keurs

The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium transients and the range of propagation velocities observed experimentally (0.05-15 mm s(-1)) could be predicted. Calcium fluctuations propagate by virtue of focal calcium release from the SR, diffusion through the cytosol (which is modulated by binding to troponin and calmodulin and sequestration by the SR), and subsequently induce calcium release from adjacent release sites of the SR. The minimal and maximal velocities derived from the simulation were 0.09 and 15 mm s(-1) respectively. The method of solution involved writing the diffusion equation as a difference equation in the spatial coordinates. Thus, coupled ordinary differential equations in time with banded coefficients were generated. The coupled equations were solved using Gear's sixth order predictor-corrector algorithm for stiff equations with reflective boundaries. The most important determinants of the velocity of propagation of the calcium waves were the diastolic [Ca++]i, the rate of rise of the release, and the amount of calcium released from the SR. The results are consistent with the assumptions that calcium loading causes an increase in intracellular calcium and calcium in the SR, and an increase in the amount and rate of calcium released. These two effects combine to increase the propagation velocity at higher levels of calcium loading.


1999 ◽  
Vol 94 (3) ◽  
pp. 145-151 ◽  
Author(s):  
U. Schotten ◽  
C. Schumacher ◽  
V. Conrads ◽  
V. Braun ◽  
F. Schöndube ◽  
...  

1998 ◽  
Vol 111 (2) ◽  
pp. 207-224 ◽  
Author(s):  
Alain Lacampagne ◽  
Michael G. Klein ◽  
Martin F. Schneider

The modulation by internal free [Mg2+] of spontaneous calcium release events (Ca2+ “sparks”) from the sarcoplasmic reticulum (SR) was studied in depolarized notched frog skeletal muscle fibers using a laser scanning confocal microscope in line-scan mode (x vs. t). Over the range of [Mg2+] from 0.13 to 1.86 mM, decreasing the [Mg2+] induced an increase in the frequency of calcium release events in proportion to [Mg2+]−1.6. The change of event frequency was not due to changes in [Mg-ATP] or [ATP]. Analysis of individual SR calcium release event properties showed that the variation in event frequency induced by the change of [Mg2+] was not accompanied by any changes in the spatiotemporal spread (i.e., spatial half width or temporal half duration) of Ca2+ sparks. The increase in event frequency also had no effect on the distribution of event amplitudes. Finally, the rise time of calcium sparks was independent of the [Mg2+], indicating that the open time of the SR channel or channels underlying spontaneous calcium release events was not altered by [Mg2+] over the range tested. These results suggest that in resting skeletal fibers, [Mg2+] modulates the SR calcium release channel opening frequency by modifying the average closed time of the channel without altering the open time. A kinetic reaction scheme consistent with our results and those of bilayer and SR vesicle experiments indicates that physiological levels of resting Mg2+ may inhibit channel opening by occupying the site for calcium activation of the SR calcium release channel.


1997 ◽  
Vol 272 (1) ◽  
pp. H462-H468 ◽  
Author(s):  
G. P. Zaloga ◽  
P. R. Roberts ◽  
K. W. Black ◽  
M. Lin ◽  
G. Zapata-Sudo ◽  
...  

Myocardial contractile failure is a common cause of morbidity and mortality in patients with ischemic heart disease and systemic inflammatory states such as sepsis. Accumulating evidence indicates that contractile failure is associated with dysregulation of myoplasmic calcium levels. In a search for biochemical causes for contractile dysfunction, we found that the dipeptide carnosine improves cardiac contractility and tested the possibility that carnosine plays a role in the regulation of intracellular calcium. Carnosine increased contractility in a dose-dependent manner (1-10 mM) in isolated perfused rat hearts. and it also increased free intracellular calcium levels in isolated myocytes. Carnosine increased myocyte tension via calcium release from the ryanodine receptor calcium release channel in skinned myocardial fibers and increased open-state probability and dwell time of the isolated ryanodine receptor calcium release channel in lipid bilayers. In addition. we report that carnosine sensitizes the contractile proteins so calcium. These results suggest a novel role for carnosine as a modulator of intracellular calcium and contractility in cardiac tissue.


Sign in / Sign up

Export Citation Format

Share Document