A GTPase Cycle Coupled to the Cell Cycle

1994 ◽  
pp. 99-110
Author(s):  
Elias Coutavas ◽  
Mindong Ren ◽  
Joel D. Oppenheim ◽  
Vijay Yajnik ◽  
Peter D’Eustachio ◽  
...  
Keyword(s):  
1997 ◽  
Vol 110 (19) ◽  
pp. 2345-2357 ◽  
Author(s):  
A. Battistoni ◽  
G. Guarguaglini ◽  
F. Degrassi ◽  
C. Pittoggi ◽  
A. Palena ◽  
...  

RanBP1 is a molecular partner of the Ran GTPase, which is implicated in the control of several processes, including DNA replication, mitotic entry and exit, cell cycle progression, nuclear structure, protein import and RNA export. While most genes encoding Ran-interacting partners are constitutively active, transcription of the RanBP1 mRNA is repressed in non proliferating cells, is activated at the G1/S transition in cycling cells and peaks during S phase. We report here that forced expression of the RanBP1 gene disrupts the orderly execution of the cell division cycle at several stages, causing inhibition of DNA replication, defective mitotic exit and failure of chromatin decondensation during the telophase-to-interphase transition in cells that achieve nuclear duplication and chromosome segregation. These results suggest that deregulated RanBP1 activity interferes with the Ran GTPase cycle and prevents the functioning of the Ran signalling system during the cell cycle.


1994 ◽  
Vol 14 (6) ◽  
pp. 4216-4224 ◽  
Author(s):  
M Ren ◽  
E Coutavas ◽  
P D'Eustachio ◽  
M G Rush

Ran/TC4, a member of the RAS gene superfamily, encodes an abundant nuclear protein that binds and hydrolyzes GTP. Transient expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis blocked DNA replication, suggesting a role for Ran/TC4 in the regulation of cell cycle progression. To test this possibility, we exploited an efficient transfection system, involving the introduction of cDNAs in the pMT2 vector into 293/Tag cells, to analyze phenotypes associated with mutant and wild-type Ran/TC4 expression. Expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis inhibited proliferation of transfected cells by arresting them predominantly in the G2, but also in the G1, phase of the cell cycle. Deletion of an acidic carboxy-terminal hexapeptide from the Ran/TC4 mutant did not alter its nuclear localization but did block its inhibitory effect on cell cycle progression. These data suggest that normal progression of the cell cycle is coupled to the operation of a Ran/TC4 GTPase cycle. Mediators of this coupling are likely to include the nuclear regulator of chromosome condensation 1 protein and the mitosis-promoting factor complex.


1994 ◽  
Vol 14 (6) ◽  
pp. 4216-4224
Author(s):  
M Ren ◽  
E Coutavas ◽  
P D'Eustachio ◽  
M G Rush

Ran/TC4, a member of the RAS gene superfamily, encodes an abundant nuclear protein that binds and hydrolyzes GTP. Transient expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis blocked DNA replication, suggesting a role for Ran/TC4 in the regulation of cell cycle progression. To test this possibility, we exploited an efficient transfection system, involving the introduction of cDNAs in the pMT2 vector into 293/Tag cells, to analyze phenotypes associated with mutant and wild-type Ran/TC4 expression. Expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis inhibited proliferation of transfected cells by arresting them predominantly in the G2, but also in the G1, phase of the cell cycle. Deletion of an acidic carboxy-terminal hexapeptide from the Ran/TC4 mutant did not alter its nuclear localization but did block its inhibitory effect on cell cycle progression. These data suggest that normal progression of the cell cycle is coupled to the operation of a Ran/TC4 GTPase cycle. Mediators of this coupling are likely to include the nuclear regulator of chromosome condensation 1 protein and the mitosis-promoting factor complex.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
Irwin I. Singer

Our previous results indicate that two types of fibronectin-cytoskeletal associations may be formed at the fibroblast surface: dorsal matrixbinding fibronexuses generated in high serum (5% FBS) cultures, and ventral substrate-adhering units formed in low serum (0.3% FBS) cultures. The substrate-adhering fibronexus consists of at least vinculin (VN) and actin in its cytoplasmic leg, and fibronectin (FN) as one of its major extracellular components. This substrate-adhesion complex is localized in focal contacts, the sites of closest substratum approach visualized with interference reflection microscopy, which appear to be the major points of cell-tosubstrate adhesion. In fibroblasts, the latter substrate-binding complex is characteristic of cultures that are arrested at the G1 phase of the cell cycle due to the low serum concentration in their medium. These arrested fibroblasts are very well spread, flattened, and immobile.


Author(s):  
Tetsuaki Osafune ◽  
Shuji Sumida ◽  
Tomoko Ehara ◽  
Eiji Hase ◽  
Jerome A. Schiff

Changes in the morphology of pyrenoid and the distribution of RuBisCO in the chloroplast of Euglena gracilis were followed by immunoelectron microscopy during the cell cycle in a light (14 h)- dark (10 h) synchronized culture under photoautotrophic conditions. The imrnunoreactive proteins wereconcentrated in the pyrenoid, and less densely distributed in the stroma during the light period (growth phase, Fig. 1-2), but the pyrenoid disappeared during the dark period (division phase), and RuBisCO was dispersed throughout the stroma. Toward the end of the division phase, the pyrenoid began to form in the center of the stroma, and RuBisCO is again concentrated in that pyrenoid region. From a comparison of photosynthetic CO2-fixation with the total carboxylase activity of RuBisCO extracted from Euglena cells in the growth phase, it is suggested that the carboxylase in the pyrenoid functions in CO2-fixation in photosynthesis.


2010 ◽  
Vol 34 (8) ◽  
pp. S50-S50
Author(s):  
Xiaoyan Pan ◽  
Xinmei Zhou ◽  
Guangtao Xu ◽  
Lingfen Miao ◽  
Shuoru Zhu

2020 ◽  
Vol 64 (5) ◽  
pp. 765-777 ◽  
Author(s):  
Yixi Xu ◽  
Dongyi Xu

Abstract Deoxyribonucleic acid (DNA) is at a constant risk of damage from endogenous substances, environmental radiation, and chemical stressors. DNA double-strand breaks (DSBs) pose a significant threat to genomic integrity and cell survival. There are two major pathways for DSB repair: nonhomologous end-joining (NHEJ) and homologous recombination (HR). The extent of DNA end resection, which determines the length of the 3′ single-stranded DNA (ssDNA) overhang, is the primary factor that determines whether repair is carried out via NHEJ or HR. NHEJ, which does not require a 3′ ssDNA tail, occurs throughout the cell cycle. 53BP1 and the cofactors PTIP or RIF1-shieldin protect the broken DNA end, inhibit long-range end resection and thus promote NHEJ. In contrast, HR mainly occurs during the S/G2 phase and requires DNA end processing to create a 3′ tail that can invade a homologous region, ensuring faithful gene repair. BRCA1 and the cofactors CtIP, EXO1, BLM/DNA2, and the MRE11–RAD50–NBS1 (MRN) complex promote DNA end resection and thus HR. DNA resection is influenced by the cell cycle, the chromatin environment, and the complexity of the DNA end break. Herein, we summarize the key factors involved in repair pathway selection for DSBs and discuss recent related publications.


2001 ◽  
Vol 120 (5) ◽  
pp. A103-A103
Author(s):  
X CHEN ◽  
D JOHNS ◽  
D GEIMAN ◽  
E MARBAN ◽  
V YANG

Sign in / Sign up

Export Citation Format

Share Document