Development of a High Spatial Resolution X-Ray Fluorescence Element Mapping Spectrometer and Its Application to Quantitative Analysis of Biological Systems

1992 ◽  
pp. 1285-1287 ◽  
Author(s):  
Natsuo Fukumoto ◽  
Yoshinori Kobayashi ◽  
Masayasu Kurahashi ◽  
Akira Kawase
1991 ◽  
Vol 35 (B) ◽  
pp. 1285-1287
Author(s):  
Natsuo Fukumoto ◽  
Yoshinori Kobayashi ◽  
Masayasu Kurahashi ◽  
Akira Kawase

We developed an X-ray fluorescence element mapping spectrometer (XEMS) based on commercially available energy dispersive XRF equipment several years ago. Using XEMS, we found that this technique is applicable to realtime observation of the elemental distributions in living biological samples. This kind of observation is almost impossible by conventional techniques such as EPMA, PIXE etc. But the spatial resolution of the previous system was about 200pm, Inferior by almost two orders to that of EPMA for example. So we developed a new spectrometer with an improved resolution of better than 20um and almost the same sensitivity.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


Radiology ◽  
2015 ◽  
Vol 275 (1) ◽  
pp. 310-310 ◽  
Author(s):  
Richard M. Morris ◽  
Lang Yang ◽  
Miguel A. Martín-Fernández ◽  
Jose M. Pozo ◽  
Alejandro F. Frangi ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


2005 ◽  
Author(s):  
Michael R. Squillante ◽  
Richard A. Myers ◽  
Mitchell Woodring ◽  
James F. Christian ◽  
Frank Robertson ◽  
...  

1991 ◽  
Vol 2 (2) ◽  
pp. 183-184 ◽  
Author(s):  
Y Kobayashi ◽  
N Fukumoto ◽  
M Kurahashi

Author(s):  
Toru Aoki ◽  
Kento Tabata ◽  
Ryota Okate ◽  
Shailendra Singh ◽  
Hiroki Kase ◽  
...  

Author(s):  
Sho Miyao ◽  
Takahiro Tanino ◽  
Nobuyasu Fujioka ◽  
Izumi Hikita ◽  
Tomohiro Morinaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document