The Use of Mutants to Understand Competence for Shoot-Borne Root Initiation

Author(s):  
W. P. Hackett ◽  
S. T. Lund ◽  
A. G. Smith
Keyword(s):  
Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Michael Gomez Selvaraj ◽  
Maria Elker Montoya-P ◽  
John Atanbori ◽  
Andrew P. French ◽  
Tony Pridmore

Abstract Background Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development. Results We explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits. Conclusions The aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.


1986 ◽  
Vol 16 (4) ◽  
pp. 696-700 ◽  
Author(s):  
Chris P. Andersen ◽  
Edward I. Sucoff ◽  
Robert K. Dixon

The influence of root zone temperature on root initiation, root elongation, and soluble sugars in roots and shoots was investigated in a glasshouse using 2-0 red pine (Pinusresinosa Ait.) seedlings lifted from a northern Minnesota nursery. Seedlings were potted in a sandy loam soil and grown in chambers where root systems were maintained at 8, 12, 16, or 20 °C for 27 days; seedling shoots were exposed to ambient glasshouse conditions. Total new root length was positively correlated with soil temperature 14, 20, and 27 days after planting, with significantly more new root growth at 20 °C than at other temperatures. The greatest number of new roots occurred at 16 °C; the least, at 8 °C. Total soluble sugar concentrations in stem tissue decreased slightly as root temperature increased. Sugar concentrations in roots were similar at all temperatures. The results suggest that root elongation is suppressed more than root tip formation when red pine seedlings are exposed to the cool soil temperatures typically found during spring and fall outplanting.


1979 ◽  
Vol 18 (3) ◽  
pp. 383-387 ◽  
Author(s):  
G.R. Kantharaj ◽  
S. Mahadevan ◽  
G. Padmanaban

Author(s):  
Yang Li ◽  
Heng Ye ◽  
Li Song ◽  
Tri D Vuong ◽  
Qijian Song ◽  
...  

Abstract Aluminum (Al) toxicity inhibits soybean root growth, leading to insufficient water and nutrient uptake. In this research, two soybean lines (Magellan and PI 567731) were identified differing in Al tolerance as determined by primary root length ratio (PRL_Ratio), total root length ratio (TRL_Ratio), and root tip number ratio (RTN_Ratio) under Al stress compared to unstressed controlled conditions. Serious root necrosis was observed in PI 567731, but not in Magellan under Al stress. An F8 recombinant inbred line population derived from a cross between Magellan and PI 567731 was used to map the quantitative trait loci (QTL) for Al-tolerance. Three QTL on chromosomes 3, 13, and 20, with tolerant-alleles from Magellan, were identified. qAl_Gm13 and qAl_Gm20, explained large phenotypic variations (13-27%) and played roles in maintaining root elongation. qAl_Gm03 was involved in maintaining root initiation under Al stress. These results suggested the importance of using the parameters of root elongation and root initiation in Al tolerance studies. In addition, qAl_Gm13 and qAl_Gm20 were confirmed in near-isogenic backgrounds and were identified to epistatically regulate Al tolerance in internal detoxification instead of Al 3+ exclusion. The candidate genes for qAl_Gm13 and qAl_Gm20 were suggested by analyzing a previous RNA-seq study. Phylogenetic and pedigree analysis identified the tolerant alleles of both loci derived from the US ancestor line, A.K.[FC30761], originally from China. Our results provide novel genetic resources for breeding Al-tolerant soybeans and suggest that the internal detoxification contributes to soybean tolerance to excessive soil Al.


Sign in / Sign up

Export Citation Format

Share Document