Cellular Mechanisms Underlying Differences in Acute Ethanol Sensitivity

Author(s):  
Michael R. Palmer ◽  
Thomas V. Dunwiddie ◽  
Barry J. Hoffer
2010 ◽  
Vol 38 (1) ◽  
pp. 172-176 ◽  
Author(s):  
Jeff W. Barclay ◽  
Margaret E. Graham ◽  
Mark R. Edwards ◽  
James R. Johnson ◽  
Alan Morgan ◽  
...  

Acute exposure to ethanol is known to modulate signalling within the nervous system. Physiologically these effects are both presynaptic and postsynaptic in origin; however, considerably more research has focused primarily on postsynaptic targets. Recent research using the model organism Caenorhabditis elegans has determined a role for specific proteins (Munc18-1 and Rab3) and processes (synaptic vesicle recruitment and fusion) in transducing the presynaptic effects of ethanol. In the present paper, we review these results, identifying the proteins and protein interactions involved in ethanol sensitivity and discuss their links with mammalian studies of alcohol abuse.


2015 ◽  
Vol 85 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Christopher L. Kliethermes

Ethanol-induced locomotor stimulation has been variously described as reflective of the disinhibitory, euphoric, or reinforcing effects of ethanol and is commonly used as an index of acute ethanol sensitivity in rodents. The fruit fly Drosophila melanogaster also shows a locomotor stimulant response to ethanol that is believed to occur via conserved, ethanol-sensitive neurobiological mechanisms, but it is currently unknown whether this response is conserved among arthropod species or is idiosyncratic to D. melanogaster. The current experiments surveyed locomotor responses to ethanol in a phylogenetically diverse panel of insects and other arthropod species. A clear ethanol-induced locomotor stimulant response was seen in 9 of 13 Drosophilidae species tested, in 8 of 10 other species of insects, and in an arachnid (wolf spider) and a myriapod (millipede) species. Given the diverse phylogenies of the species that showed the response, these experiments support the hypothesis that locomotor stimulation is a conserved behavioral response to ethanol among arthropod species. Further comparative studies are needed to determine whether the specific neurobiological mechanisms known to underlie the stimulant response in D. melanogaster are conserved among arthropod and vertebrate species.


2009 ◽  
Vol 20 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Margaret E. Graham ◽  
Mark R. Edwards ◽  
Lindy Holden-Dye ◽  
Alan Morgan ◽  
Robert D. Burgoyne ◽  
...  

Acute ethanol exposure affects the nervous system as a stimulant at low concentrations and as a depressant at higher concentrations, eventually resulting in motor dysfunction and uncoordination. A recent genetic study of two mouse strains with varying ethanol preference indicated a correlation with a polymorphism (D216N) in the synaptic protein Munc18-1. Munc18-1 functions in exocytosis via a number of discrete interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1. We report that the mutation affects binding to syntaxin but not through either a closed conformation mode of interaction or through binding to the syntaxin N terminus. The D216N mutant instead has a specific impairment in binding the assembled SNARE complex. Furthermore, the mutation broadens the duration of single exocytotic events. Expression of the orthologous mutation (D214N) in the Caenorhabditis elegans UNC-18 null background generated transgenic rescues with phenotypically similar locomotion to worms rescued with the wild-type protein. Strikingly, D214N worms were strongly resistant to both stimulatory and sedative effects of acute ethanol. Analysis of an alternative Munc18-1 mutation (I133V) supported the link between reduced SNARE complex binding and ethanol resistance. We conclude that ethanol acts, at least partially, at the level of vesicle fusion and that its acute effects are ameliorated by point mutations in UNC-18.


2020 ◽  
Author(s):  
Johannes Knabbe ◽  
Jil Protzmann ◽  
Niklas Schneider ◽  
Dominik Dannehl ◽  
Michael Berger ◽  
...  

SummaryAlcohol intoxication at early ages is a risk factor for development of addictive behavior. To uncover neuronal molecular correlates of acute ethanol intoxication, we used stable-isotope labeled mice combined with quantitative mass spectrometry to screen over 2000 hippocampal proteins of which 72 changed synaptic abundance up to two-fold after ethanol exposure. Among those were mitochondrial proteins and proteins important for neuronal morphology, including MAP6 and Ankyrin-G. Based on these candidate proteins, we found acute and lasting molecular, cellular, and behavioral changes following a single intoxication in alcohol-naïve mice. Immunofluorescence analysis revealed a shortening of axon initial segments. Longitudinal two-photon in vivo imaging showed increased synaptic dynamics and mitochondrial trafficking in axons. Knockdown of mitochondrial trafficking in dopaminergic neurons abolished conditioned alcohol preference in Drosophila. This introduces mitochondrial trafficking as a process implicated in reward learning, and highlights the potential of high-resolution proteomics to identify cellular mechanisms relevant for addictive behavior.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0246224
Author(s):  
Rory M. Weston ◽  
Rebecca E. Schmitt ◽  
Mike Grotewiel ◽  
Michael F. Miles

Chloride intracellular channels (CLICs) are a unique family of evolutionarily conserved metamorphic proteins, switching between stable conformations based on redox conditions. CLICs have been implicated in a wide variety biological processes including ion channel activity, apoptosis, membrane trafficking, and enzymatic oxidoreductase activity. Understanding the molecular mechanisms by which CLICs engage in these activities is an area of active research. Here, the sole Drosophila melanogaster ortholog, Clic, was targeted for RNAi knockdown to identify genes and biological processes associated with Clic expression. Clic knockdown had a substantial impact on global transcription, altering expression of over 7% of transcribed Drosophila genes. Overrepresentation analysis of differentially expressed genes identified enrichment of Gene Ontology terms including Cytoplasmic Translation, Oxidation-Reduction Process, Heme Binding, Membrane, Cell Junction, and Nucleolus. The top term, Cytoplasmic Translation, was enriched almost exclusively with downregulated genes. Drosophila Clic and vertebrate ortholog Clic4 have previously been tied to ethanol sensitivity and ethanol-regulated expression. Clic knockdown-responsive genes from the present study were found to overlap significantly with gene sets from 4 independently published studies related to ethanol exposure and sensitivity in Drosophila. Bioinformatic analysis of genes shared between these studies revealed an enrichment of genes related to amino acid metabolism, protein processing, oxidation-reduction processes, and lipid particles among others. To determine whether the modulation of ethanol sensitivity by Clic may be related to co-regulated oxidation-reduction processes, we evaluated the effect of hyperoxia on ethanol sedation in Clic knockdown flies. Consistent with previous findings, Clic knockdown reduced acute ethanol sedation sensitivity in flies housed under normoxia. However, this effect was reversed by exposure to hyperoxia, suggesting a common set of molecular-genetic mechanism may modulate each of these processes. This study suggests that Drosophila Clic has a major influence on regulation of oxidative stress signaling and that this function overlaps with the molecular mechanisms of acute ethanol sensitivity in the fly.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e82435 ◽  
Author(s):  
Sean P. Farris ◽  
Michael F. Miles

Fly ◽  
2011 ◽  
Vol 5 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Anita V. Devineni ◽  
Kimberly McClure ◽  
Douglas Guarnieri ◽  
Ammon Corl ◽  
Frederick Wolf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document