scholarly journals UNC-18 Modulates Ethanol Sensitivity in Caenorhabditis elegans

2009 ◽  
Vol 20 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Margaret E. Graham ◽  
Mark R. Edwards ◽  
Lindy Holden-Dye ◽  
Alan Morgan ◽  
Robert D. Burgoyne ◽  
...  

Acute ethanol exposure affects the nervous system as a stimulant at low concentrations and as a depressant at higher concentrations, eventually resulting in motor dysfunction and uncoordination. A recent genetic study of two mouse strains with varying ethanol preference indicated a correlation with a polymorphism (D216N) in the synaptic protein Munc18-1. Munc18-1 functions in exocytosis via a number of discrete interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1. We report that the mutation affects binding to syntaxin but not through either a closed conformation mode of interaction or through binding to the syntaxin N terminus. The D216N mutant instead has a specific impairment in binding the assembled SNARE complex. Furthermore, the mutation broadens the duration of single exocytotic events. Expression of the orthologous mutation (D214N) in the Caenorhabditis elegans UNC-18 null background generated transgenic rescues with phenotypically similar locomotion to worms rescued with the wild-type protein. Strikingly, D214N worms were strongly resistant to both stimulatory and sedative effects of acute ethanol. Analysis of an alternative Munc18-1 mutation (I133V) supported the link between reduced SNARE complex binding and ethanol resistance. We conclude that ethanol acts, at least partially, at the level of vesicle fusion and that its acute effects are ameliorated by point mutations in UNC-18.

2010 ◽  
Vol 38 (1) ◽  
pp. 172-176 ◽  
Author(s):  
Jeff W. Barclay ◽  
Margaret E. Graham ◽  
Mark R. Edwards ◽  
James R. Johnson ◽  
Alan Morgan ◽  
...  

Acute exposure to ethanol is known to modulate signalling within the nervous system. Physiologically these effects are both presynaptic and postsynaptic in origin; however, considerably more research has focused primarily on postsynaptic targets. Recent research using the model organism Caenorhabditis elegans has determined a role for specific proteins (Munc18-1 and Rab3) and processes (synaptic vesicle recruitment and fusion) in transducing the presynaptic effects of ethanol. In the present paper, we review these results, identifying the proteins and protein interactions involved in ethanol sensitivity and discuss their links with mammalian studies of alcohol abuse.


2017 ◽  
Author(s):  
Pratik Adhikari ◽  
Donnoban Orozco ◽  
Fred W. Wolf

Drug naïve animals given a single dose of ethanol show changed responses to subsequent doses, including the development of ethanol tolerance and ethanol preference. These simple forms of behavioral plasticity are due in part to changes in gene expression and neuronal properties. Surprisingly little is known about how ethanol initiates changes in gene expression or what the changes do. Here we demonstrate a role in ethanol plasticity for Hr38, the sole Drosophila homolog of the mammalian Nr4a1/2/3 class of immediate early response transcription factors. Acute ethanol exposure induces transient expression of Hr38 and other immediate early neuronal activity genes. Ethanol activates the Mef2 transcriptional activator to induce Hr38, and the Sirt1 histone/protein deacetylase terminates Hr38 induction. Loss of Hr38 decreases ethanol tolerance and causes precocious but short-lasting ethanol preference. Similarly, reduced Mef2 activity in all neurons or specifically in the mushroom body α/β neurons decreases ethanol tolerance; Sirt1 promotes ethanol tolerance in these same neurons. Genetically decreasing Hr38 expression levels in Sirt1 null mutants restores ethanol tolerance, demonstrating that both induction and termination of Hr38 expression are important for behavioral plasticity to proceed. These data demonstrate that Hr38 functions as an immediate early transcription factor that promotes ethanol behavioral plasticity.


Fly ◽  
2011 ◽  
Vol 5 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Anita V. Devineni ◽  
Kimberly McClure ◽  
Douglas Guarnieri ◽  
Ammon Corl ◽  
Frederick Wolf ◽  
...  

2021 ◽  
Author(s):  
Jianzheng He ◽  
Si Yun Ng ◽  
Alice Mei Xien Tan ◽  
Wei Lin Yong ◽  
Fengwei Yu

Prolonged prenatal or adult exposure to ethanol is detrimental to mental and physical well-being, resulting in developmental abnormalities, progressive addiction and ultimate death. A growing number of studies have shown the therapeutic potential of cannabinoids in ethanol-related behaviors in mammals. However, the potential pharmacological actions of cannabinoids in ethanol responses have not been examined in the model organism Drosophila melanogaster. Here, we systematically investigated the effects of various cannabinoids on ethanol preference, ethanol sensitivity and tolerance, and ethanol-induced developmental defect in Drosophila. We showed that treatment with the phytocannabinoid cannabidiol (CBD) displayed a significant decrease in preference for consuming ethanol in adult flies. Interestingly, cannabinoids exhibited differential roles in short- and long- term ethanol tolerance in flies. Although cannabinoids had no detectable effects on short-term ethanol tolerance, CBD and the endocannabinoid anandamide (AEA) suppressed long-term tolerance to ethanol. Moreover, ethanol exposure delayed larval-to-pupal development and increased larval/pupal size. Unexpectedly, treatment with CBD or endocannabinoids did not attenuate ethanol-induced developmental delay, instead, exacerbated its detrimental effect. Thus, our systematical study reveals, for the first time, a differential role of the cannabinoids in the modulation of ethanol-related responses in Drosophila.


2013 ◽  
Vol 24 (4) ◽  
pp. 510-520 ◽  
Author(s):  
Matyáš Fendrych ◽  
Lukáš Synek ◽  
Tamara Pečenková ◽  
Edita Janková Drdová ◽  
Juraj Sekereš ◽  
...  

The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6–green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering.


2009 ◽  
Vol 88 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Angelo Theodoratos ◽  
Belinda Whittle ◽  
Anselm Enders ◽  
David C Tscharke ◽  
Carla M Roots ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. H174-H184 ◽  
Author(s):  
Katherine A. Radek ◽  
Elizabeth J. Kovacs ◽  
Richard L. Gallo ◽  
Luisa A. DiPietro

Physiological angiogenesis is regulated by various factors, including signaling through vascular endothelial growth factor (VEGF) receptors. We previously reported that a single dose of ethanol (1.4 g/kg), yielding a blood alcohol concentration of 100 mg/dl, significantly impairs angiogenesis in murine wounds, despite adequate levels of VEGF, suggesting direct effects of ethanol on endothelial cell signaling (40). To examine the mechanism by which ethanol influences angiogenesis in wounds, we employed two different in vitro angiogenesis assays to determine whether acute ethanol exposure (100 mg/dl) would have long-lasting effects on VEGF-induced capillary network formation. Ethanol exposure resulted in reduced VEGF-induced cord formation on collagen and reduced capillary network structure on Matrigel in vitro. In addition, ethanol exposure decreased expression of endothelial VEGF receptor-2, as well as VEGF receptor-2 phosphorylation in vitro. Inhibition of ethanol metabolism by 4-methylpyrazole partially abrogated the effect of ethanol on endothelial cell cord formation. However, mice treated with t-butanol, an alcohol not metabolized by alcohol dehydrogenase, exhibited no change in wound vascularity. These results suggest that products of ethanol metabolism are important factors in the development of ethanol-induced changes in endothelial cell responsiveness to VEGF. In vivo, ethanol exposure caused both decreased angiogenesis and increased hypoxia in wounds. Moreover, in vitro experiments demonstrated a direct effect of ethanol on the response to hypoxia in endothelial cells, as ethanol diminished nuclear hypoxia-inducible factor-1α protein levels. Together, the data establish that acute ethanol exposure significantly impairs angiogenesis and suggest that this effect is mediated by changes in endothelial cell responsiveness to both VEGF and hypoxia.


2004 ◽  
Vol 97 (1) ◽  
pp. 360-368 ◽  
Author(s):  
Pamela Metten ◽  
Karyn L. Best ◽  
Andy J. Cameron ◽  
Alisha B. Saultz ◽  
Jessica M. Zuraw ◽  
...  

Identification of genetic and physiological mechanisms underlying a drug's or mutation's effects on motor performance could be aided by the existence of a simple observation-based rating scale of ataxia for mice. Rating scales were developed to assess ataxia after ethanol (2.75, 3.0, and 3.25 g/kg) in nine inbred mouse strains. Each scale independently rates a single behavior. Raters, blinded to dose, scored four behaviors (splay of hind legs, wobbling, nose down, and belly drag) at each of four time points after injection. The severities of hind leg splaying and wobbling were quantifiable, whereas nose down and belly dragging were expressed in all-or-none fashion. Interrater reliabilities were substantial (0.75 ≤ r ≤ 0.99). Splay scores (rated 0–5) displayed significant effects of strain, dose, and time point. Wobbling (rated 0–4) was dependent on strain and time point. Ethanol affected wobbling (most strains scored >0 at some time), but all doses were equally effective. Incidence of nose down and belly dragging behaviors increased strain dependently after ethanol, but strains did not differentially respond to dose. Ethanol-induced splaying was modestly, and negatively, genetically correlated with wobbling. Nose down and belly dragging tended to be associated with splaying and wobbling at later times. Four distinct ataxia-related behaviors were sensitive to ethanol. Strains differed in ethanol sensitivity for all measures. Modest strain mean correlations among behaviors indicate that these behaviors are probably under control of largely different genes and that ataxia rating scales should rate separate behaviors on discrete scales.


2011 ◽  
Vol 22 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Marion Weber-Boyvat ◽  
Nina Aro ◽  
Konstantin G. Chernov ◽  
Tuula Nyman ◽  
Jussi Jäntti

The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.


Sign in / Sign up

Export Citation Format

Share Document