The Genetic Basis of a Cell-Pattern Homology in Drosophila Species

Author(s):  
T. M. Rizki ◽  
Rose M. Rizki
Genetics ◽  
1994 ◽  
Vol 138 (2) ◽  
pp. 491-497
Author(s):  
K J Moore ◽  
D A Swing ◽  
N G Copeland ◽  
N A Jenkins

Abstract The murine dilute suppressor gene (dsu) suppresses the coat-color phenotype of three pigment mutations, dilute (d), ashen (ash) and leaden (ln), that each produce adendritic melanocytes. Suppression is due to the ability of dsu to partially restore (ash and ln), or almost completely restore (d), normal melanocyte morphology. While the ash and ln gene products have yet to be identified, the d gene encodes a novel myosin heavy chain (myosin 12), which is speculated to be necessary for the elaboration, maintenance, and/or function of melanocyte cell processes. To begin to discriminate between different models of dsu action, we have produced aggregation chimeras between mice homozygous for dsu and mice homozygous for d to determine if dsu acts cell autonomously or cell nonautonomously. In addition, we have further refined the map location of dsu in order to examine a number of possible dsu candidate genes mapping in the region and to provide a genetic basis for the positional cloning of dsu.


2006 ◽  
Vol 295 (1) ◽  
pp. 418
Author(s):  
Patricia J. Wittkopp ◽  
Belinda K. Haerum ◽  
Emma Stewart ◽  
Alekhya Ratnala ◽  
Gizem Kalay ◽  
...  

Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1349-1352 ◽  
Author(s):  
H. Honda ◽  
M. Tanemura ◽  
A. Yoshida

Cells in the neurogenic region of an insect ectoderm have two alternative fates, making neurons or epidermis. The fates seem to be determined through a laterally inhibitory interaction among cells. That is, initially homogeneous cells are all competent to differentiate into neuroblasts. Once a cell has differentiated as a neuroblast, it inhibits its immediate neighbors from following this pathway. The differentiation process is simulated by a digital computer in a planar array of polygonal domains similar to a cell pattern. We find that the number of cells differentiating as neuronal precursors in insect neurogenesis is that expected under the hypothesis of lateral inhibition of cell differentiation between immediate neighbors.


2000 ◽  
Vol 68 (9) ◽  
pp. 5018-5025 ◽  
Author(s):  
John F. Bohnsack ◽  
Shinji Takahashi ◽  
Laura Hammitt ◽  
Dylan V. Miller ◽  
Adrienne A. Aly ◽  
...  

ABSTRACT Many group B Streptococcus agalactiae strains and other pathogenic streptococci express a cell-associated peptidase that inactivates C5a (C5a-ase), the major neutrophil chemoattractant produced by activation of the complement cascade. Type III group B streptococci (GBS) can be classified genotypically into three restriction digest pattern types. Functional C5a-ase activity of GBS correlates with this genetic typing; therefore, we sought to identify a genetic basis for this phenomenon. Southern hybridization confirms that all type III GBS contain scpB, the gene encoding GBS C5a-ase. GBS strains with high C5a-ase functional activity and those with no or very low activity both express immunoreactive C5a-ase. ThescpB sequence of strain I30, which has high C5a-ase activity, is 98.2% homologous to the previously reported serotype II GBS scpB sequence. The scpB sequences of strains I25 and GW, which have low or no C5a-ase activity, are identical. The predicted I25 and GW C5a-ase proteins share a four-amino-acid deletion affecting the protease histidine active-site consensus motif. Recombinant I30 C5a-ase has good functional activity, whereas recombinant I25 C5a-ase has low activity. These data demonstrate that functional C5a-ase differences between type III GBS strains are attributable to a genetic polymorphism of scpB. The ubiquitous expression of C5a-ase, irrespective of functional activity, suggests that C5a-ase may have a second, as yet unidentified, function.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Sign in / Sign up

Export Citation Format

Share Document