Selection Rules on Helicity during Discrete Transitions of the Genome Conformational State in Intact and X-Rayed Cells of E.Coli in Millimeter Range of Electromagnetic Field

Author(s):  
I. Ya. Belyaev ◽  
V. S. Shcheglov ◽  
Ye. D. Alipov
Author(s):  
S. A. Pyroha

The existing methods for calculating the energy of stationary states relate it to the energy of the electron, considering it negative in the atom. Formally, choosing a point that corresponds to zero potential energy you can assign a negative value to the electron energy. However, this approach does not answer many other questions, for example, the actual value of the energy of stationary states is unknown, but only the difference in energies between stationary states is known; the concept of “minimum energy of the system” loses its meaning (choosing the origin of the energy reference, we replace the minimum with the maximum, or vice versa); the physical reason for the stability of stationary states is not clear; it is impossible to reveal the physical reason for the introduction of selection rules, since the Heisenberg uncertainty relations exclude the analysis of the transition mechanism, replacing it with the concept of a “quantum leap”. Let us show that the energy of stationary states is the energy of a spherical capacitor, the covers of which are spheres whose radii are equal to the radius of the nuclear and corresponding stationary state. The energy of the ground state in the hydrogen atom is 0.8563997 MeV. The presence of charges and a magnetic field presupposes the circulation of energy in the volume of the atom (the Poynting vector is not zero). Revealed quantization of the angular momentum of the electromagnetic field in stationary states is [Formula: see text]. The change in the angular momentum of the electromagnetic field during transitions between stationary states in atoms removes the physical grounds for introducing selection rules. The analysis shows that the Heisenberg uncertainty relations are not universal, and their application in each specific case must be justified.


Nanophotonics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 93-110 ◽  
Author(s):  
Nahid Talebi ◽  
Surong Guo ◽  
Peter A. van Aken

AbstractDipole selection rules underpin much of our understanding in characterization of matter and its interaction with external radiation. However, there are several examples where these selection rules simply break down, for which a more sophisticated knowledge of matter becomes necessary. An example, which is increasingly becoming more fascinating, is macroscopic toroidization (density of toroidal dipoles), which is a direct consequence of retardation. In fact, dissimilar to the classical family of electric and magnetic multipoles, which are outcomes of the Taylor expansion of the electromagnetic potentials and sources, toroidal dipoles are obtained by the decomposition of the moment tensors. This review aims to discuss the fundamental and practical aspects of the toroidal multipolar moments in electrodynamics, from its emergence in the expansion set and the electromagnetic field associated with it, the unique characteristics of their interaction with external radiations and other moments, to the recent attempts to realize pronounced toroidal resonances in smart configurations of meta-molecules. Toroidal moments not only exhibit unique features in theory but also have promising technologically relevant applications, such as data storage, electromagnetic-induced transparency, unique magnetic responses and dichroism.


1993 ◽  
Vol 3 (3) ◽  
pp. 363-371 ◽  
Author(s):  
A. Konrad ◽  
I. A. Tsukerman

Sign in / Sign up

Export Citation Format

Share Document