Highly Purified Cytochrome P-450 from Liver Microsomal Membranes: Recent Studies on the Mechanism of Catalysis

Author(s):  
M. J. Coon ◽  
D. P. Ballou ◽  
F. P. Guengerich ◽  
G. D. Nordblom ◽  
R. E. White
1978 ◽  
Vol 78 (2) ◽  
pp. 503-519 ◽  
Author(s):  
S Matsuura ◽  
Y Fujii-Kuriyama ◽  
Y Tashiro

Localization of cytochrome P-450 on various membrane fractions of rat liver cells was studied by direct immunoelectron microscopy using ferritin-conjugated antibody to the cytochrome. The outer surfaces of almost all the microsomal vesicles were labeled with ferritin particles. The distribution of the particles on each microsomal vesicle was usually heterogeneous, indicating clustering of the cytochrome, and phenobarbital treatment markedly increased the labeled regions of the microsomal membranes. The outer nuclear envelopes were also labeled with ferritin particles, while on the surface of other membrane structures such as Golgi complexes, outer mitochondrial membranes and plasma membranes the labeling was scanty and at the control level. The present observation indicates that cytochrome P-450 molecules are localized exclusively on endoplasmic reticulum membranes and outer nuclear envelopes where they are probably distributed not uniformly but heterogeneously, forming clusters or patches. The physiological significance of such microheterogeneity in the distribution of the cytochrome on endoplasmic reticulum membranes is discussed.


1983 ◽  
Vol 211 (2) ◽  
pp. 333-340 ◽  
Author(s):  
E A Shephard ◽  
I R Phillips ◽  
R M Bayney ◽  
S F Pike ◽  
B R Rabin

We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.


1977 ◽  
Vol 72 (3) ◽  
pp. 568-583 ◽  
Author(s):  
O S Nilsson ◽  
G Dallner

The transverse distribution of enzyme proteins and phospholipids within microsomal membranes was studied by analyzing membrane composition after treatment with proteases and phospholipases. Upon trypsin treatment of closed microsomal vesicles, NADH- and NADPH-cytochrome c reductases as well as cytochrome b5 were solubilized or inactivated, while cytochrome P-450 was partially inactivated. When microsomes were exposed to a concentration of deoxycholate which makes them permeable to macromolecules but does not disrupt the membrane, the detergent alone was sufficient to release four enzymes: nucleoside diphosphatase, esterase, beta-glucuronidase, and a portion of the DT-diaphorase. Introduction of trypsin into the vesicle lumen inactivated glucose-6-phosphatase completely and cytochrome P-450 partially. The rest of this cytochrome, ATPase, AMPase, UDP-glucuronyltransferase, and the remaining 50% of DT-diaphorase activity were not affected by proteolysis from either side of the membrane. Phospholipase A treatment of intact microsomes in the presence of albumin hydrolyzed all of the phosphatidylethanolamine, phosphatidylserine, and 55% of the phosphatidylcholine. From this observation, it was concluded that these lipids are localized in the outer half of the bilayer of the microsomal membrane; Phosphatidylinositol, 45% of the phosphatidylcholine, and sphingomyelin are tentatively assigned to the inner half of this bilayer. It appears that the various enzyme proteins and phospholipids of the microsomal membrane display an asymmetric distribution in the transverse plane.


1980 ◽  
Vol 187 (1) ◽  
pp. 227-237 ◽  
Author(s):  
P R McIntosh ◽  
R B Freedman

1. In liver microsomal membranes from adult rabbits treated with beta-naphthoflavone, reaction with Cu2+ salts plus 1,10-phenanthroline leads to the cross-linking of the two specifically beta-naphthoflavone-inducible cytochrome P-450 species, form 4 and form 6, to form homo- and hetero-dimer species. 2. The cross-linking is not reversed by treatment with 2-mercaptoethanol, so that it can be observed conveniently and specifically on conventional reducing sodium dodecyl sulphate/polyacrylamide gels. 3. The reaction occurs rapidly, and significant cross-linking is observed after 30s at all temperatures from −10 to 40 degrees C. 4. The cross-linking can be brought about by Cu2+ alone at concentrations greater than 0.5 mM, but not by 1,10-phenanthroline alone; at low Cu2+ concentrations, 1,10-phenanthroline enhances the cross-linking reaction, but high concentrations of 1,10-phenanthroline are inhibitory; the optimal molar ratio of Cu2+ to 1,10-phenanthroline is 4:1.5. The effect of Cu2+ is not mimicked by Mn2+, Fe3+, Fe2+, Co2+, Ni2+, Zn2+ or Ag+; Cu+ is probably also ineffective. 6. The cross-linking reaction is inhibited by the prior addition of high concentrations of EDTA or thiol compounds, by sodium dodecyl sulphate at greater than or equal to 0.1% and by sodium deoxycholate and non-ionic detergents at greater than or equal to 1%; the reaction cannot be reversed by incubation with EDTA or with thiol compounds after reaction with cupric phenanthroline; the cross-linking reaction is not inhibited by prior treatment of microsomal membranes with N-ethylmaleimide. 7. The chemical nature of the cross-linking reaction is unknown, but it is most unlikely that it involves the formation of intermolecular disulphide bonds. 8. The great specificity of the reaction makes it a promising tool for the study of molecular interactions between cytochrome P-450 species in intact microsomal membranes.


1983 ◽  
Vol 212 (1) ◽  
pp. 55-64 ◽  
Author(s):  
I R Phillips ◽  
E A Shephard ◽  
R M Bayney ◽  
S F Pike ◽  
B R Rabin ◽  
...  

Two independent radioimmunoassay techniques for the major phenobarbital-inducible cytochrome P-450 (PB P-450) of rat liver microsomal membranes are described. The first technique employs as the source of radiolabelled antigen the products of translation in vitro labelled with [35S]methionine. The second technique employs purified antigen labelled with 125I and is quicker, less expensive and more precise. Both assays are highly specific for PB P-450 and can detect quantities of this variant as small as 1 ng. This is several orders of magnitude more sensitive than any method described previously for the quantification of cytochromes P-450, and consequently the technique is particularly well suited for the quantification of so-called constitutive cytochrome P-450 variants that are present in very low amounts. The results of the radioimmunoassays demonstrate that the apparent 2.6-fold induction of total cytochromes P-450 after phenobarbital treatment is due to a 43-fold increase in Pb P-450. Although β-naphthoflavone increases the total content of cytochrome P-450 of microsomal membranes 1.4-fold, it actually causes a 55% decrease in the amount of PB P-450. Thus different xenobiotics can have differential effects on the expression of the genes for specific cytochrome P-450 variants.


Sign in / Sign up

Export Citation Format

Share Document