Anisotropic Elastic Constants of a Fiber-Reinforced Boron-Aluminum Composite

Author(s):  
S. K. Datta ◽  
H. M. Ledbetter
2020 ◽  
Author(s):  
Ting Lei ◽  
◽  
Romain Prioul ◽  
Adam Donald ◽  
Edgar Ignacio Velez Arteaga ◽  
...  

1999 ◽  
Vol 66 (3) ◽  
pp. 709-713 ◽  
Author(s):  
R. S. Feltman ◽  
M. H. Santare

A model is presented to analyze the effect of fiber fracture on the anisotropic elastic properties of short-fiber reinforced composite materials. The effective moduli of the material are modeled using a self-consistent scheme which includes the calculated energy dissipated through the opening of a crack in an arbitrarily oriented elliptical inclusion. The model is an extension of previous works which have modeled isotropic properties of short-fiber reinforced composites with fiber breakage and anisotropic properties of monolithic materials with microcracks. Two-dimensional planar composite systems are considered. The model allows for the calculation of moduli under varying degrees of fiber alignment and damage orientation. In the results, both aligned fiber systems and randomly oriented fiber systems with damage-induced anisotropy are examined.


Sign in / Sign up

Export Citation Format

Share Document