Cancer Risks Associated with Agriculture: Epidemiologic Evidence

1982 ◽  
pp. 93-111 ◽  
Author(s):  
Aaron Blair
Risk Analysis ◽  
1988 ◽  
Vol 8 (2) ◽  
pp. 205-214 ◽  
Author(s):  
Irva Hertz-Picciotto ◽  
Norman Gravitz ◽  
Raymond Neutra

2012 ◽  
Vol 42 (2) ◽  
pp. 1-38
Author(s):  
BRUCE JANCIN

2006 ◽  
Vol 6 (2) ◽  
pp. 31-37
Author(s):  
K. Ohno ◽  
E. Kadota ◽  
Y. Kondo ◽  
T. Kamei ◽  
Y. Magara

The cancer risks posed by ten substances in raw and purified water were estimated for each municipality in Japan to compare risks between raw and purified water, and inter-municipality. Water concentrations were estimated by use of statistical data. Assigning cancer unit risks to each substance and applying the assumption of additive toxicological effects to multiple carcinogens, total cancer risks of the waters were estimated. As a result, the geometric means of total cancer risks in raw and purified water were 1.16×10−5 and 2.18×10−5, respectively. In raw water, the contribution ratio of arsenic to total cancer risk accounted for 97%. In purified water, that of four trihalomethanes (THMs) accounted for 54%. The increase of total cancer risks in purified water was due to THMs. In regard to the geographical variation, the relationship between population size and total cancer risks were investigated. The result was that there were higher cancer risks in the big cities with the population more than a million both in raw and purified water. One plausible reason for the higher risks in purified water in the big cities is a larger chlorination dose due to the huge water supply areas. The reason for the increase in raw water remained unclear.


2020 ◽  
Vol 27 (37) ◽  
pp. 6373-6383 ◽  
Author(s):  
Leila Jouybari ◽  
Faezeh Kiani ◽  
Farhad Islami ◽  
Akram Sanagoo ◽  
Fatemeh Sayehmiri ◽  
...  

: Breast cancer is the most common neoplasm, comprising 16% of all women's cancers worldwide. Research of Copper (Cu) concentrations in various body specimens have suggested an association between Cu levels and breast cancer risks. This systematic review and meta-analysis summarize the results of published studies and examine this association. We searched the databases PubMed, Scopus, Web of Science, and Google Scholar and the reference lists of relevant publications. The Standardized Mean Differences (SMDs) between Cu levels in cancer cases and controls and corresponding Confidence Intervals (CIs), as well as I2 statistics, were calculated to examine heterogeneity. Following the specimens used in the original studies, the Cu concentrations were examined in three subgroups: serum or plasma, breast tissue, and scalp hair. We identified 1711 relevant studies published from 1984 to 2017. There was no statistically significant difference between breast cancer cases and controls for Cu levels assayed in any studied specimen; the SMD (95% CI) was -0.01 (-1.06 - 1.03; P = 0.98) for blood or serum, 0.51 (-0.70 - 1.73; P = 0.41) for breast tissue, and -0.88 (-3.42 - 1.65; P = 0.50) for hair samples. However, the heterogeneity between studies was very high (P < 0.001) in all subgroups. We did not find evidence for publication bias (P = 0.91). The results of this meta-analysis do not support an association between Cu levels and breast cancer. However, due to high heterogeneity in the results of original studies, this conclusion needs to be confirmed by well-designed prospective studies.


Sign in / Sign up

Export Citation Format

Share Document