Developmental Potential of Murine Pluripotential Stem Cells

Author(s):  
Allan Bradley
Cell ◽  
1986 ◽  
Vol 45 (6) ◽  
pp. 917-927 ◽  
Author(s):  
Ihor R. Lemischka ◽  
David H. Raulet ◽  
Richard C. Mulligan

2019 ◽  
Vol 29 (4) ◽  
pp. 979-992.e4 ◽  
Author(s):  
Xiuying Zhong ◽  
Peng Cui ◽  
Yongping Cai ◽  
Lihua Wang ◽  
Xiaoping He ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3111
Author(s):  
Po-Yu Lin ◽  
Denny Yang ◽  
Chi-Hsuan Chuang ◽  
Hsuan Lin ◽  
Wei-Ju Chen ◽  
...  

The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are ‘true’ totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely ‘cluster 3’, as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.


Author(s):  
Nicholas D Allen

The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.


2009 ◽  
Vol 219 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Rosa C. McCarty ◽  
Stan Gronthos ◽  
Andrew C. Zannettino ◽  
Bruce K. Foster ◽  
Cory J. Xian

2002 ◽  
Vol 96 (1-2) ◽  
pp. 81-90 ◽  
Author(s):  
Angela Gritti ◽  
Angelo L Vescovi ◽  
Rossella Galli

1994 ◽  
Vol 14 (1) ◽  
pp. 382-390 ◽  
Author(s):  
S Okada ◽  
Z Q Wang ◽  
A E Grigoriadis ◽  
E F Wagner ◽  
T von Rüden

Mice lacking c-fos develop severe osteopetrosis with deficiencies in bone remodeling and exhibit extramedullary hematopoiesis, thymic atrophy, and altered B-cell development. In this study, we have used these mice to characterize in detail the developmental potential of hematopoietic stem cells lacking c-fos and to analyze how the lymphoid differentiation is altered. In c-fos -/- mice, B-cell numbers are reduced in the spleen, lymph nodes, and the peripheral blood as a result of a marked reduction (> 90%) in the number of clonogenic B-cell precursors. In contrast, the number and lineage distribution of myeloid progenitor cells are not affected. The thymic defects observed in a large number of these mice correlate with their health status, suggesting that this may be an indirect effect of the c-fos mutation. In vitro differentiation and bone marrow reconstitution experiments demonstrated that hematopoietic stem cells lacking c-fos can give rise to all mature myeloid as well as lymphoid cells, suggesting that the observed B lymphopenia in the mutant mice is due to an altered environment. Transplantation of wild-type bone marrow cells into newborn mutant mice resulted in the establishment of a bone marrow space and subsequent correction of the B-cell defect. These results demonstrate that hematopoietic stem cells lacking Fos have full developmental potential and that the observed defect in B-cell development is most likely due to the impaired bone marrow environment as a consequence of osteopetrosis.


Reproduction ◽  
2001 ◽  
pp. 729-733 ◽  
Author(s):  
T Amano ◽  
Y Kato ◽  
Y Tsunoda

The developmental potential of enucleated mouse oocytes receiving embryonic stem cells from ten lines with either the same or different genetic backgrounds using the cell fusion method was examined in vitro and in vivo. The development of nuclear-transferred oocytes into blastocysts was high (34-88%). However, there was no clear correlation between development into blastocysts after nuclear transfer and the chimaera formation rate of embryonic stem cells. The development into live young was low (1-3%) in all cell lines and 14 of 19 young died shortly after birth. Most of the live young had morphological abnormalities. Of the five remaining mice, two died at days 23 and 30 after birth, but the other three mice are still active at days 359 (mouse 1) and 338 (mice 4 and 5) after birth, with normal fertility. However, the reasons for the abnormalities and postnatal death of embryonic stem cell-derived mice are unknown.


Sign in / Sign up

Export Citation Format

Share Document