X-Ray Diffraction Studies of the Cross-Bridge Intermediate States

Author(s):  
S. Xu ◽  
S. Malinchik ◽  
S. Frisbie ◽  
J. Gu ◽  
T. Kraft ◽  
...  
2019 ◽  
Vol 20 (19) ◽  
pp. 4892 ◽  
Author(s):  
Knupp ◽  
Squire

The stiffness of the myosin cross-bridges is a key factor in analysing possible scenarios to explain myosin head changes during force generation in active muscles. The seminal study of Huxley and Simmons (1971: Nature 233: 533) suggested that most of the observed half-sarcomere instantaneous compliance (=1/stiffness) resides in the myosin heads. They showed with a so-called T1 plot that, after a very fast release, the half-sarcomere tension reduced to zero after a step size of about 60Å (later with improved experiments reduced to 40Å). However, later X-ray diffraction studies showed that myosin and actin filaments themselves stretch slightly under tension, which means that most (at least two-thirds) of the half sarcomere compliance comes from the filaments and not from cross-bridges. Here we have used a different approach, namely to model the compliances in a virtual half sarcomere structure in silico. We confirm that the T1 curve comes almost entirely from length changes in the myosin and actin filaments, because the calculated cross-bridge stiffness (probably greater than 0.4 pN/Å) is higher than previous studies have suggested. Our model demonstrates that the formulations produced by previous authors give very similar results to our model if the same starting parameters are used. However, we find that it is necessary to model the X-ray diffraction data as well as mechanics data to get a reliable estimate of the cross-bridge stiffness. In the light of the high cross-bridge stiffness found in the present study, we present a plausible modified scenario to describe aspects of the myosin cross-bridge cycle in active muscle. In particular, we suggest that, apart from the filament compliances, most of the cross-bridge contribution to the instantaneous T1 response may come from weakly-bound myosin heads, not myosin heads in strongly attached states. The strongly attached heads would still contribute to the T1 curve, but only in a very minor way, with a stiffness that we postulate could be around 0.1 pN/Å, a value which would generate a working stroke close to 100 Å from the hydrolysis of one ATP molecule. The new model can serve as a tool to calculate sarcomere elastic properties for any vertebrate striated muscle once various parameters have been determined (e.g., tension, T1 intercept, temperature, X-ray diffraction spacing results).


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


1977 ◽  
Vol 270 (2) ◽  
pp. 311-320 ◽  
Author(s):  
I Matsubara ◽  
H Suga ◽  
N Yagi

1976 ◽  
Vol 31 (9-10) ◽  
pp. 612-621 ◽  
Author(s):  
W Müller-Klieser ◽  
W Kreutz

Abstract Mitochondria were isolated using sorbitol and high buffer concentration in the medium. X-ray diffraction patterns arising from the mitochondrial cristae-membrane were recorded in the fully dried state and in two different states in humidity. The Q-function evaluation of these X-ray dif­fraction diagrams resulted in electron density cross-section profiles, which consist of two main peaks of opposite sign and one, respectively two, smaller peaks. The total thickness of the membrane amounts to 120 Å in the dry and 140 Å to 160 Å in the wet state.An interpretation of the cross-section profile is tentatively proposed.


1975 ◽  
Vol 15 (7) ◽  
pp. 687-705 ◽  
Author(s):  
R.S. Goody ◽  
K.C. Holmes ◽  
H.G. Mannherz ◽  
J.B. Leigh ◽  
G. Rosenbaum

Biopolymers ◽  
1990 ◽  
Vol 29 (8-9) ◽  
pp. 1125-1128 ◽  
Author(s):  
Yasuhiro Takeda
Keyword(s):  
X Ray ◽  

1991 ◽  
Vol 77 (11) ◽  
pp. 2052-2059 ◽  
Author(s):  
Tizuko MAEDA ◽  
Keiichi MARUTA ◽  
Osamu FURUKIMI ◽  
Nobuyuki MORITO

Sign in / Sign up

Export Citation Format

Share Document