Recent Developments in the Measurement of Orientation in Polymers by X-Ray Diffraction

1963 ◽  
pp. 231-241 ◽  
Author(s):  
Zigmond W. Wilchinsky
2020 ◽  
Author(s):  
Lauren E. Hatcher ◽  
Mark R. Warren ◽  
Anuradha R. Pallipurath ◽  
Lucy K. Saunders ◽  
Jonathan M. Skelton

1976 ◽  
Vol 20 ◽  
pp. 53-62
Author(s):  
Alan D. Mighell

Single crystal X-ray diffraction methods for the study of crystalline materials, although reliable, have been, mainly confined to the academic laboratory because of the rather lengthy and complex procedure necessary to determine the unit cell and the space group. The situation has now changed. Several recent developments give single-crystal methods considerable potential for routine Industrial use. They Include growth of the data base, advances in lattice theory, and automation of the single-crystal X-ray diffractometer. To identify an unknown, one can start with a single crystal, mount it on the diffractometer, determine a refined primitive cell, reduce the cell, and check against a file of known reduced cells. The entire procedure can be automated. As a result, the single-crystal X-ray diffraction method can now complement the powder method for the routine analysis of crystalline materials.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2585 ◽  
Author(s):  
Ravi Mani Tripathi ◽  
Dohee Ahn ◽  
Yeong Mok Kim ◽  
Sang J. Chung

Recent developments in the area of nanotechnology have focused on the development of nanomaterials with catalytic activities. The enzyme mimics, nanozymes, work efficiently in extreme pH and temperature conditions, and exhibit resistance to protease digestion, in contrast to enzymes. We developed an environment-friendly, cost-effective, and facile biological method for the synthesis of ZnO-Pd nanosheets. This is the first biosynthesis of ZnO-Pd nanosheets. The synthesized nanosheets were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray. The d-spacing (inter-atomic spacing) of the palladium nanoparticles in the ZnO sheets was found to be 0.22 nm, which corresponds to the (111) plane. The XRD pattern revealed that the 2θ values of 21.8°, 33.3°, 47.7°, and 56.2° corresponded with the crystal planes of (100), (002), (112), and (201), respectively. The nanosheets were validated to possess peroxidase mimetic activity, which oxidized the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate in the presence of H2O2. After 20 min of incubation time, the colorless TMB substrate oxidized into a dark-blue-colored one and a strong peak was observed at 650 nm. The initial velocities of Pd-ZnO-catalyzed TMB oxidation by H2O2 were analyzed by Michaelis–Menten and Lineweaver–Burk plots, resulting in 64 × 10−6 M, 8.72 × 10−9 Msec−1, and 8.72 × 10−4 sec−1 of KM, Vmax, and kcat, respectively.


2005 ◽  
Vol 20 (4) ◽  
pp. 294-305 ◽  
Author(s):  
R. Guinebretière ◽  
A. Boulle ◽  
O. Masson ◽  
A. Dauger

The purpose of this paper is to give a rapid overview of the recent developments in the field of X-ray diffraction on polycrystalline materials from the viewpoint of the instruments. After a brief historical report, the main types of laboratory diffractometers are presented. At the end of the twentieth century the apparition of position sensitive detectors and artificial crystal monochromators have induced the conception of new diffractometer often based on old geometrical arrangements. Those modern diffractometers are described with respect to the more conventional ones. Among the experimental parameters which can characterize a given diffractometer, the instrumental resolution function and the acquisition time of the pattern are of primary importance. The different apparatus are compared with respect to those two parameters.


2004 ◽  
Vol 03 (06) ◽  
pp. 757-763 ◽  
Author(s):  
PAMELA WHITFIELD ◽  
LYNDON MITCHELL

Powder X-ray diffraction has become a cornerstone technique for deriving crystallite size in nanoscience due to speed and "simplicity". Unfortunately, this apparently simple technique commonly has unexpected problems. Anisotropic peak broadening related to crystallite shape, defects, and microstrain occurs frequently in nanomaterials and can significantly complicate the analysis. In some instances, the usage of the conventional single peak approach would give erroneous results, and in others, this type of analysis is not even possible. A number of different nanocrystalline oxides have been examined to determine their crystallite sizes by different techniques. They differ in terms of crystal symmetry, crystallinity, density, and present different challenges with regard to size analysis.


Author(s):  
D. Van Dyck

We are living in a very exciting period for structural research using HREM. Indeed, the possibility to “see” the individual atoms of which matter is constituted seems within reach. Recent technological improvements allow to obtain a resolution of about 0.1 nm. However, the potential power of the technique is still severely limited by the problem of quantitative interpretation of the images. For instance, the use of computer simulation images requires much a priori knowledge which makes HREM very dependent on other techniques. The situation can be compared with the early days of X-ray diffraction. Recent developments make it possible to retrieve the object structure directly from the electron micrographs. We will discuss future prospects in this direction.


Sign in / Sign up

Export Citation Format

Share Document