Factors Affecting the Design of High-Pressure Liquefied-Gas Storage Tanks

1962 ◽  
pp. 143-148 ◽  
Author(s):  
T. J. Webster ◽  
J. Robb
2017 ◽  
Vol 42 (38) ◽  
pp. 24222-24228 ◽  
Author(s):  
Jingjie Ren ◽  
Han Zhang ◽  
Mingshu Bi ◽  
Jianliang Yu ◽  
Shaochen Sun

Author(s):  
Bożena Kukfisz ◽  
Aneta Kuczyńska ◽  
Robert Piec ◽  
Barbara Szykuła-Piec

Many countries lack clear legal requirements on the distance between buildings and petrol station facilities. The regulations in force directly determine the petrol station facilities’ required distance to buildings, and such distances are considered relevant for newly designed and reconstructed buildings. Public buildings must be located no closer than 60 m to the above-ground liquefied gas tanks and liquid gas dispensers. Still, based on engineering calculations and the applied technical measures, it is possible to determine a safe distance for buildings that are constructed, extended and reconstructed, to which superstructures are added or whose utilisation method changes. The paper presents the results of calculations devoted to determining a safe distance between public buildings and LPG filling station facilities, using selected analytical models. The analyses were carried out for the LPG gas system commonly used in petrol stations, consisting of two gas storage tanks of 4.85 m3 capacity each, and a dispenser. It is legitimate to eliminate the obligation to observe the 60 m distance between LPG filling stations and public buildings and the mandatory distance of 60 m between liquefied gas dispensers and public buildings is not justified in light of the implemented requirements to use various protections at self-service liquefied gas filling stands.


2021 ◽  
Vol 40 ◽  
pp. 102692
Author(s):  
Guanjun Liu ◽  
Fan Yang ◽  
Wenbo Liu ◽  
Yujiao Bai ◽  
Chuang Han ◽  
...  

2021 ◽  
Vol 21 (2) ◽  
pp. 91-94
Author(s):  
Seno - Darmanto ◽  
Muhammad Fahrudin

CNG Cooler is a heat exchanger in CNG Plant System which has function to reduce CNG temperature. CNG (Compressed Natural Gas) is natural gas which compressed by gas compressor from normal pressure up to certain high pressure. CNG Plant is gas storage and supply facility for PLTGU when it work at peak load hours. CNG Cooler reduce temperature of CNG which out from gas compressor before saved in storage utility which purpose to avoid over heating in the next process, increase durability of the next process utility, and make gas storage utility design easy.


Author(s):  
Takayasu Tahara

Pressure equipment in refinery and petrochemical industries in Japan has been getting old, mostly more than 30 years in operation. Currently, the Japanese regulations for pressure equipment in service are the same as those in existence during the fabrication of the pressure equipment. Accordingly, there is an immediate need for an up to date more advanced “Fitness For Service” (FFS) evaluation requirements for pressure equipment. In order to introduce the latest FFS methodologies to Japanese industries, the High Pressure Institute of Japan (HPI) has organized two task groups. One is a working group for development of a maintenance standard for non-nuclear industries. Its prescribed code “Assessment procedure for crack-like flaws in pressure equipment” is for conducting quantitative safety evaluations of flaws detected in common pressure equipment such as pressure vessels, piping, storage tanks. The other is a special task group to study of API RP579 from its drafting stage as a member of TG579. The FFS Handbook, especially for refinery and petrochemical industries, has been developed based on API RP579 with several modifications to meet Japanese pressure vessel regulations on April 2001. [1] It is expected that both the Standard and FFS handbook will be used as an exemplified standard with Japanese regulations for practical maintenance. This paper presents concepts of “Assessment procedure for crack-like flaws in pressure equipment” HPIS Z101, 2001 [2].


Sign in / Sign up

Export Citation Format

Share Document