Assessment of Genetic Variation in the Presence of Maternal or Paternal Effects in Herbivorous Insects

Author(s):  
MaryCarol Rossiter
1998 ◽  
Vol 55 (9) ◽  
pp. 2048-2057 ◽  
Author(s):  
K P Hebert ◽  
P L Goddard ◽  
W W Smoker ◽  
A J Gharrett

Quantitative genetic variation of development rate was evident among 20 half-sib and 40 full-sib families within each of two seasonally separate components of a population of pink salmon (Oncorhynchus gorbuscha) (Ho: no sire effect on temperature units at hatch, P < 0.02). Differences between averages of families spawned 3 weeks apart may have had genetic or environmental sources (e.g., in constant 8°C, early embryos hatched at 606 temperature units, and late embryos, at 625). Statistical interactions between paternal effects and environment (embryos were cultured in four temperature regimes, two simulated natural regimes and two constant temperatures; Ho: no sire by regime interaction effect on temperature units at hatch, P < 0.09) were weak evidence that genotype by environment interactions contributed to variation. Paternal effects in analysis of variance (evidence of additive genetic variation) were detected only at later stages. Evidences of genetic variation and of interactions between genotypes and environments are pertinent to resource conservation because they suggest that harvest management or hatchery practice have the potential to reduce genetic variation in salmon populations.


Genome ◽  
1987 ◽  
Vol 29 (6) ◽  
pp. 839-845 ◽  
Author(s):  
R. E. Withler

Mortality of an unknown etiology occurs after hatching and before emergence among Harrison River chinook salmon (Oncorhynchus tshawytscha) alevins incubated in the Chehalis River Hatchery, British Columbia. Inter- and intra-stock genetic variation for alevin survival and time to death was investigated at Chehalis Hatchery in factorial crosses among chinook salmon from the Harrison and Capilano rivers. Alevin survival by family ranged from 0 to 100%, with a mean value of 35.2%. The mean family survival of pure Harrison alevins (13.0%) was significantly lower than that of Capilano alevins (64.1%). For the Harrison stock, estimates of the heritability of survival were 1.05 ± 0.62 (sire component) and 0.03 ± 0.07 (dam component). For the Capilano stock, the corresponding estimates were 0.79 ± 0.53 and 0.80 ± 0.54. Family means of time to death ranged from 7.5 to 48 days after exposure to mortality-inducing agents. The mean times to death for pure Harrison (15.3 days) and Capilano (21.8 days) families were not significantly different. Sire and dam component heritability estimates for time to death were high for the Harrison stock (1.39 ± 0.87 and 0.71 ± 0.46) but low for the Capilano stock (0.06 ± 0.11 and 0.17 ± 0.18). Values of survival and time to death for the reciprocal interstock hybrid alevins generally fell between those of the parental stocks. Neither survival nor time to death differed significantly between the reciprocal hybrids, but both traits were more strongly influenced by sire than by dam. The possibility of asynchronous paternal and maternal allele activation during embryonic development was proposed as an explanation for the strong paternal effects observed in this study. Key words: Oncorhynchus, salmon, heritability, mortality.


2013 ◽  
Author(s):  
L. M. Bartoshuk ◽  
◽  
V. B. Duffy ◽  
K. Fast ◽  
B. G. Green ◽  
...  

2006 ◽  
Vol 36 (17) ◽  
pp. 39
Author(s):  
PATRICE WENDLING

2011 ◽  
Vol 49 (01) ◽  
Author(s):  
A Tönjes ◽  
A Tönjes ◽  
T Strauch ◽  
C Ruffert ◽  
J Mössner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document