Statistical Theory of Hadron Interaction at High Energies

Author(s):  
I. N. Sisakyan ◽  
E. L. Feinberg ◽  
D. S. Chernavskii
2018 ◽  
Vol 47 ◽  
pp. 1860099
Author(s):  
O. V. Selyugin

The dependence of the hadron interaction on its structure is examined in the framework of the generalized parton distributions (GPDs). The [Formula: see text] dependence of the GPDs is determined by the parton distribution functions (PDFs), which were obtained from the deep inelastic scattering. The analysis of the whole sets of experimental data on the electromagnetic form factors of the proton and neutron with taking into account many forms of PDFs, obtained by the different Collaborations, make it possible to obtain the special momentum transfer dependence of the GPDs. This permits us to obtain the electromagnetic and gravitomagnetic form factors of the nucleons. The impact parameter dependence of the proton and neutron charge and matter densities is examined. The elastic hadron scattering at high energies was analyzed in the framework of the model that takes into account both these form factors (electromagnetic and gravitomagnetic).


1991 ◽  
Vol 06 (25) ◽  
pp. 4395-4435 ◽  
Author(s):  
K. SAILER ◽  
TH. SCHÖNFELD ◽  
ZS. SCHRAM ◽  
A. SCHÄFER ◽  
W. GREINER

We present the dynamical string model of high-energy hadronic processes, developed by us recently. To describe the dynamical aspects of the decay of hadrons and those of the hadron-hadron interaction correctly, a semiclassical unified string-flux tube model of hadrons is used. Specific aspects of this model are discussed: (i) the transverse extension of gluon flux tubes, (ii) the decay of highly excited flux tubes, (iii) the gluon structure functions of hadronic flux tubes and their connection with the total cross section of the flux tube-flux tube interaction at high energies. The dynamical string model is applied to the numerical simulation of e+e− annihilation and pp collision at high energies.


Author(s):  
A. Howie ◽  
D.W. McComb

The bulk loss function Im(-l/ε (ω)), a well established tool for the interpretation of valence loss spectra, is being progressively adapted to the wide variety of inhomogeneous samples of interest to the electron microscopist. Proportionality between n, the local valence electron density, and ε-1 (Sellmeyer's equation) has sometimes been assumed but may not be valid even in homogeneous samples. Figs. 1 and 2 show the experimentally measured bulk loss functions for three pure silicates of different specific gravity ρ - quartz (ρ = 2.66), coesite (ρ = 2.93) and a zeolite (ρ = 1.79). Clearly, despite the substantial differences in density, the shift of the prominent loss peak is very small and far less than that predicted by scaling e for quartz with Sellmeyer's equation or even the somewhat smaller shift given by the Clausius-Mossotti (CM) relation which assumes proportionality between n (or ρ in this case) and (ε - 1)/(ε + 2). Both theories overestimate the rise in the peak height for coesite and underestimate the increase at high energies.


2001 ◽  
Vol 16 (1-2) ◽  
pp. 49-85
Author(s):  
A. De Roeck

1970 ◽  
Vol 101 (7) ◽  
pp. 385-428 ◽  
Author(s):  
Igor M. Dremin ◽  
Il'ya I. Roizen ◽  
Dmitrii S. Chernavskii

Sign in / Sign up

Export Citation Format

Share Document