General Web Performance Optimization Methods

Author(s):  
Shailesh Kumar Shivakumar
Author(s):  
A.I. Glushchenko ◽  
M.Yu. Serov

В статье рассматривается вопрос совершенствования системы управления параллельно-работающими насосными агрегатами с целью повышения энергоэффективности их работы. Проведено сравнение и выявление недостатков существующих методов решения рассматриваемой проблемы. Предложена идея нового подхода на базе онлайн оптимизации. The problem under consideration is improvement of the energy efficiency of a control system of parallel-running pump units. Known methods used to solve this problem are considered. Their advantages and disadvantages are shown. Finally, the idea of a new approach, which is based on online optimization, is proposed.


Author(s):  
A. S. RADHAMANI ◽  
E. BABURAJ

In recent studies we found that there are many optimization methods presented for multicore processor performance optimization, however each method is suffered from limitations. Hence in this paper we presented a new method which is a combination of bacterial Foraging Particle swarm Optimization with certain constraints named as Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling can be effectively implemented. The proposed Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling for multicore architecture, which updates the velocity and position by two bacterial behaviours, i.e. reproduction and elimination dispersal. The performance of CBFPSO is compared with the simulation results of GA, and the result shows that the proposed algorithm has pretty good performance on almost all types of cores compared to GA with respect to completion time and energy consumption.


2017 ◽  
Vol 9 (1) ◽  
pp. 75
Author(s):  
K. S. Shailesh ◽  
P. V. Suresh

The performance of web applications is of paramount importance as it can impact end-user experience and the business revenue. Web Performance Optimization (WPO) deals with front-end performance engineering. Web performance would impact customer loyalty, SEO, web search ranking, SEO, site traffic, repeat visitors and overall online revenue. In this paper we have conducted the survey of state of the art tools, techniques, methodologies of various aspects of web performance optimization. We have identified key web performance patterns and proposed novel web performance driven development framework. We have elaborated on various techniques related to different phases of web performance driven development framework.


2012 ◽  
Vol 198-199 ◽  
pp. 626-630
Author(s):  
Xin Wang

There are generally two types of E-commerce platform optimized programs: hardware optimization and software optimization, This paper first analyzes the system optimization techniques of software optimization, Including dynamic load optimization technology and cluster technology; Then studies the database performance optimization methods from the table, connection pooling, query and several other aspects; Finally to carry on the research to optimization electronic commerce platform used the cache technology. Proposes a universal significance of E-commerce platform software optimization solutions, these studies have some references for relevant E-commerce website designers and maintainers, and provides a strategy for the corresponding E-commerce enterprises to optimize platform environments.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5049
Author(s):  
Ran Zhang ◽  
Zhanping You ◽  
Jie Ji ◽  
Qingwen Shi ◽  
Zhi Suo

Transforming waste biomass materials into bio-oils in order to partially substitute petroleum asphalt can reduce environmental pollution and fossil energy consumption and has economic benefits. The characteristics of bio-oils and their utilization as additives of asphalts are the focus of this review. First, physicochemical properties of various bio-oils are characterized. Then, conventional, rheological, and chemical properties of bio-oil modified asphalt binders are synthetically reviewed, as well as road performance of bio-oil modified asphalt mixtures. Finally, performance optimization is discussed for bio-asphalt binders and mixtures. This review indicates that bio-oils are highly complex materials that contain various compounds. Moreover, bio-oils are source-depending materials for which its properties vary with different sources. Most bio-oils have a favorable stimulus upon the low temperature performance of asphalt binders and mixtures but exhibit a negative impact on their high-temperature performance. Moreover, a large amount of oxygen element, oxygen-comprising functional groups, and light components in plant-based bio-oils result in higher sensitivity to ageing of bio-oil modified asphalts. In order to increase the performance of bio-asphalts, most research has been limited to adding additive agents to bio-asphalts; therefore, more reasonable optimization methods need to be proposed. Furthermore, upcoming exploration is also needed to identify reasonable evaluation indicators of bio-oils, modification mechanisms of bio-asphalts, and long-term performance tracking in field applications of bio-asphalts during pavement service life.


2021 ◽  
Author(s):  
Zhenzhen Qin

In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.


Sign in / Sign up

Export Citation Format

Share Document