Tailor-Made Soluble Polymer Carriers

1998 ◽  
pp. 207-224 ◽  
Author(s):  
Paolo Ferruti ◽  
Ruth Duncan ◽  
Simon Richardson
2014 ◽  
Vol 35 (13) ◽  
pp. 1191-1197 ◽  
Author(s):  
Ilja Tabujew ◽  
Christoph Freidel ◽  
Bettina Krieg ◽  
Mark Helm ◽  
Kaloian Koynov ◽  
...  

2009 ◽  
Vol 42 (8) ◽  
pp. 1141-1151 ◽  
Author(s):  
Megan E. Fox ◽  
Francis C. Szoka ◽  
Jean M. J. Fréchet

ChemInform ◽  
2010 ◽  
Vol 41 (7) ◽  
Author(s):  
Megan E. Fox ◽  
Francis C. Szoka ◽  
Jean M. J. Frechet

2020 ◽  
Vol 17 (10) ◽  
pp. 911-924
Author(s):  
Rohitas Deshmukh

Colon cancer is one of the most prevalent diseases, and traditional chemotherapy has not been proven beneficial in its treatment. It ranks second in terms of mortality due to all cancers for all ages. Lack of selectivity and poor biodistribution are the biggest challenges in developing potential therapeutic agents for the treatment of colon cancer. Nanoparticles hold enormous prospects as an effective drug delivery system. The delivery systems employing the use of polymers, such as chitosan and pectin as carrier molecules, ensure the maximum absorption of the drug, reduce unwanted side effects and also offer protection to the therapeutic agent from quick clearance or degradation, thus allowing an increased amount of the drug to reach the target tissue or cells. In this systematic review of published literature, the author aimed to assess the role of chitosan and pectin as polymer-carriers in colon targeted delivery of drugs in colon cancer therapy. This review summarizes the various studies employing the use of chitosan and pectin in colon targeted drug delivery systems.


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1576-1586 ◽  
Author(s):  
Sara Pfister ◽  
Luca Sauser ◽  
Ilche Gjuroski ◽  
Julien Furrer ◽  
Martina Vermathen

The encapsulation of five derivatives of chlorin e6 with different hydrophobicity and aggregation properties into a series of five poloxamer-type triblock copolymer micelles (BCMs) with varying numbers of polyethylene and polypropylene glycol (PEG, PPG) units was monitored using 1H NMR spectroscopy. NMR chemical shift and line shape analysis, as well as dynamic methods including diffusion ordered spectroscopy (DOSY) and T1 and T2 relaxation time measurements of the chlorin and the polymer resonances, proved useful to assess the chlorin–BCM compatibility. The poloxamers had high capability to break up aggregates formed by chlorins up to intermediate hydrophobicity. Physically entrapped chlorins were always localized in the BCM core region. The loading capacity correlated with chlorin polarity for all poloxamers among which those with the lowest number of PPG units were most efficient. DOSY data revealed that relatively weakly aggregating chlorins partition between the aqueous bulk and micellar environment whereas more hydrophobic chlorins are well retained in the BCM core region, rendering these systems more stable. T1 and T2 relaxation time measurements indicated that motional freedom in the BCM core region contributes to encapsulation efficiency. The BCM corona dynamics were rather insensitive towards chlorin entrapment except for the poloxamers with short PEG chains. The presented data demonstrate that 1H NMR spectroscopy is a powerful complementary tool for probing the compatibility of porphyrinic compounds with polymeric carriers such as poloxamer BCMs, which is a prerequisite in the development of stable and highly efficient drug delivery systems suitable for medical applications like photodynamic therapy of tumors.


2021 ◽  
Author(s):  
Aranee Pleng Teepakakorn ◽  
Makoto Ogawa

Water-induced self-healing materials were prepared by the hybridization of a water-soluble polymer, poly(vinyl alcohol), with a smectite clay by mixing in an aqueous media and subsequent casting. Without using chemical...


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 146
Author(s):  
Markéta Jirátová ◽  
Andrea Gálisová ◽  
Maria Rabyk ◽  
Eva Sticová ◽  
Martin Hrubý ◽  
...  

Early detection of metastasis is crucial for successful cancer treatment. Sentinel lymph node (SLN) biopsies are used to detect possible pathways of metastasis spread. We present a unique non-invasive diagnostic alternative to biopsy along with an intraoperative imaging tool for surgery proven on an in vivo animal tumor model. Our approach is based on mannan-based copolymers synergistically targeting: (1) SLNs and macrophage-infiltrated solid tumor areas via the high-affinity DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) receptors and (2) tumors via the enhanced permeability and retention (EPR) effect. The polymer conjugates were modified with the imaging probes for visualization with magnetic resonance (MR) and fluorescence imaging, respectively, and with poly(2-methyl-2-oxazoline) (POX) to lower unwanted accumulation in internal organs and to slow down the biodegradation rate. We demonstrated that these polymer conjugates were successfully accumulated in tumors, SLNs and other lymph nodes. Modification with POX resulted in lower accumulation not only in internal organs, but also in lymph nodes and tumors. Importantly, we have shown that mannan-based polymer carriers are non-toxic and, when applied to an in vivo murine cancer model, and offer promising potential as the versatile imaging agents.


Sign in / Sign up

Export Citation Format

Share Document