The Relationships Between Subthalamic Nucleus, Globus Pallidus and Thalamic Parafascicular Nucleus

Author(s):  
Jean Féger ◽  
Oum-Kaltoum Hassani ◽  
Mireille Mouroux
Author(s):  
Azari H ◽  

Background: Deep Brain Stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson’s Disease (PD). The two most common sites for DBS are the Subthalamic Nucleus (STN) and Globus Pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared. Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson’s Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3) at least five participants in each group; (4) conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS III scores. Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


2021 ◽  
pp. 1-14
Author(s):  
Alexandre Boutet ◽  
Aaron Loh ◽  
Clement T. Chow ◽  
Alaa Taha ◽  
Gavin J. B. Elias ◽  
...  

OBJECTIVE Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of “first-pass” targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature. METHODS The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review. RESULTS A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging. CONCLUSIONS Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning.


Author(s):  
Charles J. Wilson

The subthalamo-pallidal system constitutes the second layer of circuitry in the basal ganglia, downstream of the striatum. It consists of four nuclei. Two of them, the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN), make their connections primarily within the basal ganglia. The others, the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr), are the output nuclei of the basal ganglia. Collectively, their axons distribute collaterals to all the targets of the basal ganglia. Rare interneurons have been reported in each of them from studies of Golgi-stained preparations, but they have not so far been confirmed using more modern methods. The circuit as described here is based primarily on studies of the axonal arborizations of neurons stained individually by intracellular or juxtacellular labeling.


Sign in / Sign up

Export Citation Format

Share Document