Protein Complexes Characterization in Arabidopsis thaliana by Tandem Affinity Purification Coupled to Mass Spectrometry Analysis

Author(s):  
Jean Bigeard ◽  
Delphine Pflieger ◽  
Jean Colcombet ◽  
Loïc Gérard ◽  
Hakim Mireau ◽  
...  
2021 ◽  
Author(s):  
Ching-Seng Ang ◽  
Joanna Sacharz ◽  
Michael G Leeming ◽  
Shuai Nie ◽  
Swati Varshney ◽  
...  

Co-immunoprecipitation of proteins coupled to mass spectrometry has transformed modern biology understanding of protein interaction networks. These approaches exploit the selective isolation of tagged proteins by affinity enrichment / purification to identify protein binding partners at scale and in an unbiased manner. In instances where a suitable antibody is not be available it is common to graft synthetic tags such as FLAG or His Tags onto target protein sequences allowing the use of commercially available and validated antibodies for affinity purification. To allow the selective elution of protein complexes competitive displacement using a large molar excess of the tag peptide is widely used. Yet, this creates downstream challenges for the mass spectrometry analysis due to the presence of large quantities of a contaminating peptide. Here, we demonstrate that Field Asymmetric Ion Mobility Spectrometry (FAIMS), a gas phase ion separation device can be applied to FLAG-Tag and His-Tag pull down assay to increase the depth of protein coverage in these experiments. By excluding tag peptides based on their ion mobility profiles we demonstrate that single compensation voltage, or stepped compensation voltages strategies can significantly increase the coverage of total proteins by up to 2.5-fold and unique proteins by up to 15-fold versus experiments that do not use FAIMS. Combined these results highlight FAIMS is able to improve proteome depth by excluding interfering peptides without the need for additional sample handling or altering sample preparation protocols.


2020 ◽  
Author(s):  
Bo Wei ◽  
Patrick Willems ◽  
Jingjing Huang ◽  
Caiping Tian ◽  
Jing Yang ◽  
...  

ABSTRACTIn proteins, hydrogen peroxide (H2O2) reacts with redox-sensitive cysteines to form cysteine sulfenic acid, also known as S-sulfenylation. These cysteine oxidation events can steer diverse cellular processes by altering protein interactions, trafficking, conformation, and function. Previously, we had identified S-sulfenylated proteins by using a tagged proteinaceous probe based on the yeast AP-1–like (Yap1) transcription factor that specifically reacts with sulfenic acids and traps them through a mixed disulfide bond. However, the identity of the S-sulfenylated amino acid residues remained enigmatic. Here, we present a technological advancement to identify in situ sulfenylated cysteines directly by means of the transgenic Yap1 probe. In Arabidopsis thaliana cells, after an initial affinity purification and a tryptic digestion, we further enriched the mixed disulfide-linked peptides with an antibody targeting the YAP1C-derived peptide (C598SEIWDR) that entails the redox-active cysteine. Subsequent mass spectrometry analysis with pLink 2 identified 1,745 YAP1C cross-linked peptides, indicating sulfenylated cysteines in over 1,000 proteins. Approximately 55% of these YAP1C-linked cysteines had previously been reported as redox-sensitive cysteines (S-sulfenylation, S-nitrosylation, and reversibly oxidized cysteines). The presented methodology provides a noninvasive approach to identify sulfenylated cysteines in any species that can be genetically modified.


2019 ◽  
Vol 96 (1) ◽  
Author(s):  
Guillaume Adelmant ◽  
Brijesh K. Garg ◽  
Maria Tavares ◽  
Joseph D. Card ◽  
Jarrod A. Marto

2019 ◽  
Vol 10 (19) ◽  
pp. 5146-5155 ◽  
Author(s):  
Di Wu ◽  
Jingwen Li ◽  
Weston B. Struwe ◽  
Carol V. Robinson

A lectin affinity purification-mass spectrometry approach to characterize lectin-reactive glycoproteoforms and elucidate lectin specificities at the intact protein level.


2014 ◽  
Vol 306 (9) ◽  
pp. C805-C818 ◽  
Author(s):  
Priyanka Kohli ◽  
Malte P. Bartram ◽  
Sandra Habbig ◽  
Caroline Pahmeyer ◽  
Tobias Lamkemeyer ◽  
...  

The function of an individual protein is typically defined by protein-protein interactions orchestrating the formation of large complexes critical for a wide variety of biological processes. Over the last decade the analysis of purified protein complexes by mass spectrometry became a key technique to identify protein-protein interactions. We present a fast and straightforward approach for analyses of interacting proteins combining a Flp-in single-copy cellular integration system and single-step affinity purification with single-shot mass spectrometry analysis. We applied this protocol to the analysis of the YAP and TAZ interactome. YAP and TAZ are the downstream effectors of the mammalian Hippo tumor suppressor pathway. Our study provides comprehensive interactomes for both YAP and TAZ and does not only confirm the majority of previously described interactors but, strikingly, revealed uncharacterized interaction partners that affect YAP/TAZ TEAD-dependent transcription. Among these newly identified candidates are Rassf8, thymopoetin, and the transcription factors CCAAT/enhancer-binding protein (C/EBP)β/δ and core-binding factor subunit β (Cbfb). In addition, our data allowed insights into complex stoichiometry and uncovered discrepancies between the YAP and TAZ interactomes. Taken together, the stringent approach presented here could help to significantly sharpen the understanding of protein-protein networks.


Sign in / Sign up

Export Citation Format

Share Document