scholarly journals Corona-Type Theorems and Division in Some Function Algebras on Planar Domains

Author(s):  
Raymond Mortini ◽  
Rudolf Rupp
Annals of PDE ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Zonglin Han ◽  
Andrej Zlatoš

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Heinrich Begehr ◽  
Bibinur Shupeyeva

AbstractThere are three basic boundary value problems for the inhomogeneous polyanalytic equation in planar domains, the well-posed iterated Schwarz problem, and further two over-determined iterated problems of Dirichlet and Neumann type. These problems are investigated in planar domains having a harmonic Green function. For the Schwarz problem, treated earlier [Ü. Aksoy, H. Begehr, A.O. Çelebi, AV Bitsadze’s observation on bianalytic functions and the Schwarz problem. Complex Var Elliptic Equ 64(8): 1257–1274 (2019)], just a modification is mentioned. While the Dirichlet problem is completely discussed for arbitrary order, the Neumann problem is just handled for order up to three. But a generalization to arbitrary order is likely.


1998 ◽  
Vol 26 (6) ◽  
pp. 1795-1818 ◽  
Author(s):  
Fabio Gavarini

2013 ◽  
Vol 54 (5) ◽  
pp. 053504 ◽  
Author(s):  
Dorin Bucur ◽  
Pedro Freitas

2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
Roberto C. Raimondo

We study the problem of the boundedness and compactness of when and is a planar domain. We find a necessary and sufficient condition while imposing a condition that generalizes the notion of radial symbol on the disk. We also analyze the relationship between the boundary behavior of the Berezin transform and the compactness of


1969 ◽  
Vol 182 (3) ◽  
pp. 145-153 ◽  
Author(s):  
E. Binz

2010 ◽  
Vol 55 (2-3) ◽  
pp. 279-300 ◽  
Author(s):  
Huiyuan Li ◽  
Jiachang Sun ◽  
Yuan Xu

Sign in / Sign up

Export Citation Format

Share Document