A Method to Introduce an Internal Tag Sequence into a Salmonella Chromosomal Gene

Author(s):  
Weidong Zhao ◽  
Stéphane Méresse
Keyword(s):  
1991 ◽  
Vol 266 (16) ◽  
pp. 10429-10437 ◽  
Author(s):  
D.K. Ann ◽  
I.K. Moutsatsos ◽  
T. Nakamura ◽  
H.H. Lin ◽  
P.L. Mao ◽  
...  

Genetics ◽  
1973 ◽  
Vol 74 (3) ◽  
pp. 477-487
Author(s):  
Sumio Minamori ◽  
Kinue Sugimoto

ABSTRACT [Delta b], symbolized as [δb], is retained by Sb chromosome lines and transmitted through the females to their progeny. Transmission through the males is not directly demonstrable (Minamori 1969a). [delta r], symbolized as [δr], is retained by Sr chromosome lines and transmitted biparentally (Minamori 1971). The multiplication of delta is suppressed at low temperature. All descendant lines derived from Sb-carrying or Sr-carrying flies in which the presence of delta cannot be demonstrated gradually accumulate their specific delta factors over many generations (Minamori 1969b, 1972). The delta factors and the sensitive chromosomes are inseparably associated. This observation led to the assumption that delta may be a copy of a chromosomal gene or a certain agent integrated into the chromosome (Minamori 1972). This assumption was examined in the present study by experiments designed to induce delta-retaining sensitive chromosomes, and to map the gene(s) responsible for delta-retention and/or for sensitivity to the killing action of delta factor. One sensitive chromosome which retained [δb] (Sb chromosome) was obtained in the presence of [δb] out of 2492 insensitive chromosomes which retained no delta; in addition one Sb chromosome was obtained in the presence of [δr] out of 2131 insensitives. The latter finding suggests that Sb might be induced by a mutation caused by [δb] or [δr], but not by integration of either delta into the chromosome. Four Sb chromosomes and one sensitive chromosome which retained [δr] (Sr chromosome) were obtained out of 1970 insensitives when males carrying the chromosome were fed an alkylating mutagen, ethyl methane sulfonate (EMS). The location of delta-retaining genes was examined by crossing-over experiments employing eight Sb and five Sr chromosomes. The genes on these chromosomes were found to be located in the same region or near one another. The gene for [δb], symbolized as Dab, and the gene for [δr], symbolized as Dar, are assumed to be multiple alleles of a locus at 2-24.9. The sensitivity of the chromosomes was modified appreciably by recombination; hence, the genes controlling this trait are assumed to be a polygenic system. The findings obtained in this study lead to the hypothesis that delta may be produced by a chromosomal gene (Da) and transmitted extrachromosomally.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 645-659 ◽  
Author(s):  
Timothy Galitski ◽  
John R Roth

Abstract The most prominent systems for the study of adaptive mutability depend on the specialized activities of genetic elements like bacteriophage Mu and the F plasmid. Searching for general adaptive mutability, we have investigated the behavior of Salmonella typhimurium strains with chromosomal lacZ mutations. We have studied 30 revertible nonsense, missense, frameshift, and insertion alleles. One-third of the mutants produced ≥10 late revertant colonies (appearing three to seven days after plating on selective medium). For the prolific mutants, the number of late revertants showed rank correlation with the residual β-galactosidase activity; for the same mutants, revertant number showed no correlation with the nonselective reversion rate (from fluctuation tests). Leaky mutants, which grew slowly on selective medium, produced late revertants whereas tight nongrowing mutants generally did not produce late revertants. However, the number of late revertants was not proportional to residual growth. Using total residual growth and the nonselective reversion rate, the expected number of late revertants was calculated. For several leaky mutants, the observed revertant number exceeded the expected number. We suggest that excess late revertants from these mutants arise from general adaptive mutability available to any chromosomal gene.


1994 ◽  
Vol 269 (14) ◽  
pp. 10891-10898
Author(s):  
S.V. Allander ◽  
C. Larsson ◽  
E. Ehrenborg ◽  
A. Suwanichkul ◽  
G. Weber ◽  
...  

2008 ◽  
Vol 4 (6) ◽  
pp. 752-754 ◽  
Author(s):  
Emma Svensson ◽  
Anders Götherström

Phylogeography has recently become more abundant in studies of demographic history of both wild and domestic species. A single nucleotide polymorphism (SNP) in the intron of the Y-chromosomal gene UTY19 displays a north–south gradient in modern cattle. Support for this geographical distribution of haplogroups has previously also been seen in ancient cattle from Germany. However, when analysing 38 historic remains of domestic bulls and three aurochs from northern Europe for this SNP we found no such association. Instead, we noted extensive amounts of temporal variation that can be attributed to transportation of cattle and late breed formation.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Quang Vinh Phan ◽  
Jörg Contzen ◽  
Petra Seemann ◽  
Manfred Gossen

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gamal Wareth ◽  
Christian Brandt ◽  
Lisa D. Sprague ◽  
Heinrich Neubauer ◽  
Mathias W. Pletz

Abstract Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes.


Sign in / Sign up

Export Citation Format

Share Document