Perineuronal Nets: A Special Structure in the Central Nervous System Extracellular Matrix

Author(s):  
Jessica C. F. Kwok ◽  
Simona Foscarin ◽  
James W. Fawcett
2000 ◽  
Vol 63 (5) ◽  
pp. 459-465 ◽  
Author(s):  
Luo Jia HONG ◽  
Wafaa Alaa El-din MUBARAK ◽  
Yuko SUNAMI ◽  
Shinichiro MURAKAMI ◽  
Yasuhiro FUYAMA ◽  
...  

1993 ◽  
Vol 104 (1) ◽  
pp. 69-76 ◽  
Author(s):  
R.P. Tucker ◽  
J.A. Hammarback ◽  
D.A. Jenrath ◽  
E.J. Mackie ◽  
Y. Xu

The glycoprotein tenascin is found in the extracellular matrix in regions of cell motility, cell proliferation, and tissue modelling. We have used novel tenascin cDNA probes to localize tenascin transcripts in the developing mouse and to study the regulation of tenascin expression by growth factors in vitro. At postnatal day 1 tenascin mRNAs are abundant in regions of bone and cartilage formation, as well as in the ependymal layer of the central nervous system. Previous studies have demonstrated that transforming growth factor-beta type 1 (TGF-beta 1) can induce tenascin expression in vitro. As TGF-beta 1 is absent or scarce in the developing brain, it is likely that other growth factors, alone or in addition to TGF-beta 1, may regulate tenascin expression during development. Therefore, we have compared the effects of TGF-beta 1 and a growth factor that is found in both developing connective tissue and the central nervous system, basic fibroblast growth factor (bFGF), on tenascin expression in a mouse embryo fibroblast cell line (Swiss 3T3 cells). Immuno-slot blot analysis of Swiss 3T3 cell-conditioned culture medium demonstrates that bFGF is a more potent inducer of tenascin expression than TGF-beta 1. Furthermore, bFGF and TGF-beta 1 have an additive effect on levels of tenascin, but not fibronectin, in the conditioned medium. Western blots revealed that different forms of tenascin are induced by bFGF and TGF-beta 1: the tenascin induced by the former has a molecular mass of approximately 250 kDa, the latter induces an approximately 200 kDa form of tenascin. The induction of large tenascin by bFGF was confirmed by northern blot analysis, which revealed increased levels of an 8 kb tenascin transcript after 24 h by as little as 4 ng/ml of bFGF in serum-free medium. Thus bFGF, alone or in combination with TGF-beta 1, is a potential regulator of tenascin expression in vitro. bFGF may alter not only the relative abundance of tenascin and fibronectin in the extracellular matrix, but also the splice variant of tenascin expressed by a given cell type.


2015 ◽  
Vol 26 (5) ◽  
pp. 489-506 ◽  
Author(s):  
Manuela Marcoli ◽  
Luigi F. Agnati ◽  
Francesco Benedetti ◽  
Susanna Genedani ◽  
Diego Guidolin ◽  
...  

AbstractMultiple players are involved in the brain integrative action besides the classical neuronal and astrocyte networks. In the past, the concept of complex cellular networks has been introduced to indicate that all the cell types in the brain can play roles in its integrative action. Intercellular communication in the complex cellular networks depends not only on well-delimited communication channels (wiring transmission) but also on diffusion of signals in physically poorly delimited extracellular space pathways (volume transmission). Thus, the extracellular space and the extracellular matrix are the main players in the intercellular communication modes in the brain. Hence, the extracellular matrix is an ‘intelligent glue’ that fills the brain and, together with the extracellular space, contributes to the building-up of the complex cellular networks. In addition, the extracellular matrix is part of what has been defined as the global molecular network enmeshing the entire central nervous system, and plays important roles in synaptic contact homeostasis and plasticity. From these premises, a concept is introduced that the global molecular network, by enmeshing the central nervous system, contributes to the brain holistic behavior. Furthermore, it is suggested that plastic ‘brain compartments’ can be detected in the central nervous system based on the astrocyte three-dimensional tiling of the brain volume and on the existence of local differences in cell types and extracellular space fluid and extracellular matrix composition. The relevance of the present view for neuropsychiatry is discussed. A glossary box with terms and definitions is provided.


Sign in / Sign up

Export Citation Format

Share Document