Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system

2000 ◽  
Vol 28 (4) ◽  
pp. 341 ◽  
Author(s):  
D.J. Prockop ◽  
S.A. Azizi ◽  
D. Colter ◽  
C. DiGirolamo ◽  
G. Kopen ◽  
...  
2000 ◽  
Vol 28 (4) ◽  
pp. 341-345 ◽  
Author(s):  
D. J. Prockop ◽  
S. A. Azizi ◽  
D. Colter ◽  
C. DiGirolamo ◽  
G. Kopen ◽  
...  

A subset of stem-like cells from bone marrow that are referred to as marrow stromal cells (MSCs) have been shown to be capable of differentiating into osteoblasts, chondrocytes, adipocytes, myocytes, astrocytes and perhaps neurons. Recently, conditions have been developed where human MSCs can be expanded almost without limit in culture without apparently losing their multi-potentiality for differentiation. The cells appear to be potentially useful for the repair of extracellular matrix and the central nervous system.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


2019 ◽  
Vol 20 (17) ◽  
pp. 4123 ◽  
Author(s):  
Diana ◽  
Gaido ◽  
Murtas

MicroRNAs, also called miRNAs or simply miR-, represent a unique class of non-coding RNAs that have gained exponential interest during recent years because of their determinant involvement in regulating the expression of several genes. Despite the increasing number of mature miRNAs recognized in the human species, only a limited proportion is engaged in the ontogeny of the central nervous system (CNS). miRNAs also play a pivotal role during the transition of normal neural stem cells (NSCs) into tumor-forming NSCs. More specifically, extensive studies have identified some shared miRNAs between NSCs and neural cancer stem cells (CSCs), namely miR-7, -124, -125, -181 and miR-9, -10, -130. In the context of NSCs, miRNAs are intercalated from embryonic stages throughout the differentiation pathway in order to achieve mature neuronal lineages. Within CSCs, under a different cellular context, miRNAs perform tumor suppressive or oncogenic functions that govern the homeostasis of brain tumors. This review will draw attention to the most characterizing studies dealing with miRNAs engaged in neurogenesis and in the tumoral neural stem cell context, offering the reader insight into the power of next generation miRNA-targeted therapies against brain malignances.


Sign in / Sign up

Export Citation Format

Share Document