Caking Process and Microstructural Changes of Wall Materials Used in Spray-Drying Process

Author(s):  
J. Porras-Saavedra ◽  
E. Palacios-González ◽  
J. Yáñez-Fernández ◽  
M. F. Mazzobre ◽  
M. P. Buera ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3873 ◽  
Author(s):  
Nameer Khairullah Mohammed ◽  
Chin Ping Tan ◽  
Yazid Abd Manap ◽  
Belal J. Muhialdin ◽  
Anis Shobirin Meor Hussin

The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters—including inlet and outlet temperatures, total solids, and the type of wall materials—that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Wasim Akram ◽  
Navneet Garud

Abstract Background Chicory is one of the major source of inulin. In our study, Box–Behnken model/response surface analysis (RSM) was used for the optimization of spray drying process variables to get the maximum inulin yield from chicory (Cichorium intybus L.). For this investigation, the investigational plan utilized three process variables drying temperature (115–125 °C), creep speed (20–24 rpm), and pressure (0.02–0.04 MPa). Result The optimal variables established by applying the Box–Behnken model were as follows: drying temperature 119.20 °C, creep speed 21.64 rpm, and pressure 0.03 MPa. The obtained powdered inulin by spray drying was investigated for the yield value, identification, size, and surface morphology of the particle. The inulin obtained from the spray drying process consists of a fine molecule-sized white powder. Instead, the drying methods shows a significant effect on the morphology and internal configuration of the powdered inulin, as the inulin obtained from spray drying was of a widespread and uniform size and shape, with a rough surface on increase in temperature and smoother surface while increasing the creep speed. The findings indicate that the spray drying with optimum parameters resulted in maximum product yield. Conclusion The outcomes of the study concluded that the product yield through spray drying technique under optimized condition is optimal as compared to other drying technique. Hence, this technique may be applied at commercial scale for the production of inulin.


2011 ◽  
Vol 17 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Arnaud Baldinger ◽  
Lucas Clerdent ◽  
Jukka Rantanen ◽  
Mingshi Yang ◽  
Holger Grohganz

2018 ◽  
Vol 37 (5) ◽  
pp. 535-545 ◽  
Author(s):  
Artur Lewandowski ◽  
Maciej Jaskulski ◽  
Ireneusz Zbiciński

2019 ◽  
Vol 24 (5) ◽  
pp. 584-592 ◽  
Author(s):  
Mahdieh Farhangi ◽  
Arash Mahboubi ◽  
Farzad Kobarfard ◽  
Alireza Vatanara ◽  
Seyed Alireza Mortazavi

Sign in / Sign up

Export Citation Format

Share Document