Advanced Assay Monitoring APP-Carboxyl-Terminal Fragments as Markers of APP Processing in Alzheimer Disease Mouse Models

Author(s):  
Ana García-Osta ◽  
Mar Cuadrado-Tejedor
2020 ◽  
Author(s):  
Lutgarde Serneels ◽  
Dries T'Syen ◽  
Laura Perez-Benito ◽  
Tom Theys ◽  
Bart De Strooper

Abstract Background Three amino acid differences between rodent and human APP affect medically important features including β-secretase cleavage of APP and aggregation of the Aβ peptide(1–3). Most rodent models for Alzheimer’s disease (AD) are therefore based on the human APP sequence expressed from artificial mini-genes randomly inserted in the rodent genome. While these models mimic rather well biochemical aspects of the disease such as Aβ-aggregation, they are also prone to overexpression artifacts and to complex phenotypical alterations due to genes affected in or close to the insertion sites of the mini-genes(4,5). Knock-in strategies introducing clinical mutants in a humanized endogenous rodent APP sequence(6) represent useful improvements, but need to be compared with appropriate humanized wild type (WT) mice.Methods Computational modelling of the human β-CTF bound to BACE1 was used to study the differential processing of rodent and human APP. We humanized the three pivotal residues G676R, F681Y and R684H (labeled according to the human APP770 isoform) in the mouse as well as in the rat by a CRISPR-Cas9 approach. These new models, termed mouse and rat App hu/hu , express APP from the endogenous promotor. We also introduced the early-onset familial Alzheimer’s disease (FAD) mutation M139T into the endogenous Rat Psen 1 gene.Results We show that the three amino acid substitutions in the rodent sequence lower the affinity of APP substrate for BACE1 cleavage. The effect on β-secretase processing was confirmed as both humanized rodent models produce three times more (human) Aβ compared to their WT rodent original strain. These models represent suitable controls or starting points for studying the effect of transgenes or knock-in mutations on APP processing(6). We introduced the early-onset familial Alzheimer disease (FAD) mutation M139T into the endogenous Rat Psen 1 gene and provide an initial characterization of Aβ processing in this novel rat AD model.Conclusion The different humanized APP models (rat and mouse) expressing human Aβ and PSEN1 M139T are valuable controls to study APP processing in vivo and allow to implement the use of human Aβ Elisa which is more sensitive than their rodent counterpart. These animals will be made available to the research community.


2009 ◽  
Vol 219 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Sandra Pereson ◽  
Hans Wils ◽  
Gernot Kleinberger ◽  
Eileen McGowan ◽  
Mado Vandewoestyne ◽  
...  

2018 ◽  
Vol 215 (6) ◽  
pp. 1665-1677 ◽  
Author(s):  
Ying Du ◽  
Yingjun Zhao ◽  
Chuan Li ◽  
Qiuyang Zheng ◽  
Jing Tian ◽  
...  

β-amyloid protein (Aβ) plays a central role in the pathogenesis of Alzheimer disease (AD). Aβ is generated from sequential cleavage of amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. Although activation of some protein kinase C (PKC) isoforms such as PKCα and ε has been shown to regulate nonamyloidogenic pathways and Aβ degradation, it is unclear whether other PKC isoforms are involved in APP processing/AD pathogenesis. In this study, we report that increased PKCδ levels correlate with BACE1 expression in the AD brain. PKCδ knockdown reduces BACE1 expression, BACE1-mediated APP processing, and Aβ production. Conversely, overexpression of PKCδ increases BACE1 expression and Aβ generation. Importantly, inhibition of PKCδ by rottlerin markedly reduces BACE1 expression, Aβ levels, and neuritic plaque formation and rescues cognitive deficits in an APP Swedish mutations K594N/M595L/presenilin-1 with an exon 9 deletion–transgenic AD mouse model. Our study indicates that PKCδ plays an important role in aggravating AD pathogenesis, and PKCδ may be a potential target in AD therapeutics.


2012 ◽  
Vol 287 (15) ◽  
pp. 11991-12005 ◽  
Author(s):  
Ji-Yeun Hur ◽  
Yasuhiro Teranishi ◽  
Takahiro Kihara ◽  
Natsuko Goto Yamamoto ◽  
Mitsuhiro Inoue ◽  
...  

In Alzheimer disease, oligomeric amyloid β-peptide (Aβ) species lead to synapse loss and neuronal death. γ-Secretase, the transmembrane protease complex that mediates the final catalytic step that liberates Aβ from its precursor protein (APP), has a multitude of substrates, and therapeutics aimed at reducing Aβ production should ideally be specific for APP cleavage. It has been shown that APP can be processed in lipid rafts, and γ-secretase-associated proteins can affect Aβ production. Here, we use a biotinylated inhibitor for affinity purification of γ-secretase and associated proteins and mass spectrometry for identification of the purified proteins, and we identify novel γ-secretase-associated proteins in detergent-resistant membranes from brain. Furthermore, we show by small interfering RNA-mediated knockdown of gene expression that a subset of the γ-secretase-associated proteins, in particular voltage-dependent anion channel 1 (VDAC1) and contactin-associated protein 1 (CNTNAP1), reduced Aβ production (Aβ40 and Aβ42) by around 70%, whereas knockdown of presenilin 1, one of the essential γ-secretase complex components, reduced Aβ production by 50%. Importantly, these proteins had a less pronounced effect on Notch processing. We conclude that VDAC1 and CNTNAP1 associate with γ-secretase in detergent-resistant membranes and affect APP processing and suggest that molecules that interfere with this interaction could be of therapeutic use for Alzheimer disease.


2019 ◽  
Vol 78 (2) ◽  
pp. 101-112 ◽  
Author(s):  
Alessandro Giuliani ◽  
Sandra Sivilia ◽  
Vito Antonio Baldassarro ◽  
Marco Gusciglio ◽  
Luca Lorenzini ◽  
...  

1999 ◽  
Vol 58 (8) ◽  
pp. 787-794 ◽  
Author(s):  
Christina A. Wilson ◽  
Robert W. Doms ◽  
Virginia M-Y Lee

PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e42823 ◽  
Author(s):  
Willem Kamphuis ◽  
Carlyn Mamber ◽  
Martina Moeton ◽  
Lieneke Kooijman ◽  
Jacqueline A. Sluijs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document