Analysis of DNA Methylation by Bisulfite Reaction in Neural Cells as an Example of Orexin Neurons

Author(s):  
Koji Hayakawa ◽  
Mitsuko Hirosawa ◽  
Kunio Shiota
Keyword(s):  
2020 ◽  
Author(s):  
Samuel E Ross ◽  
Allegra Angeloni ◽  
Alex de Mendoza ◽  
Ozren Bogdanovic

AbstractIn vertebrates, DNA methylation predominantly occurs at CG dinucleotides even though widespread non-CG methylation (mCH) has been reported in mammalian embryonic and neural cells. Unlike in mammals, where mCH is found enriched at CAC/G trinucleotides and is tissue-restricted, we find that zebrafish embryos as well as adult somatic and germline tissues display robust methylation enrichment at TGCT positions associated with mosaic satellite repeats. These repeats reside in H3K9me3-marked heterochromatin and display mCH reprogramming coincident with zygotic genome activation. Altogether, this work provides insight into a novel form of vertebrate mCH and highlights the substrate diversity of vertebrate DNA methyltransferases.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


2020 ◽  
Vol 158 (3) ◽  
pp. S50-S51
Author(s):  
Suresh Venkateswaran ◽  
Varun Kilaru ◽  
Hari Somineni ◽  
Jason Matthews ◽  
Jeffrey Hyams ◽  
...  

2019 ◽  
Author(s):  
Christine Dinh ◽  
Juan Young ◽  
Olena Bracho ◽  
Rahul Mittal ◽  
Denise Yan ◽  
...  

2007 ◽  
Vol 40 (05) ◽  
Author(s):  
MAN Muschler ◽  
T Hillemacher ◽  
H Frieling ◽  
S Moskau ◽  
A Semmler ◽  
...  

Author(s):  
Inoue A ◽  
Jiang L ◽  
Lu F ◽  
Suzuki T ◽  
Zhang Y
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document