scholarly journals Magnetic Helicity and Large Scale Magnetic Fields: A Primer

Author(s):  
Eric G. Blackman
2014 ◽  
Vol 188 (1-4) ◽  
pp. 59-91 ◽  
Author(s):  
Eric G. Blackman

2010 ◽  
Vol 6 (S271) ◽  
pp. 279-287 ◽  
Author(s):  
Axel Brandenburg ◽  
Petri J. Käpylä ◽  
Maarit J. Korpi

AbstractConvectively driven dynamos with rotation generating magnetic fields on scales large compared with the scale of the turbulent eddies are being reviewed. It is argued that such fields can be understood as the result of an α effect. Simulations in Cartesian domains show that such large-scale magnetic fields saturate on a time scale compatible with the resistive one, suggesting that the magnitude of the α effect is here still constrained by approximate magnetic helicity conservation. It is argued that, in the absence of shear and/or any other known large-scale dynamo effects, these simulations prove the existence of turbulent α2-type dynamos. Finally, recent results are discussed in the context of solar and stellar dynamos.


2005 ◽  
Vol 14 (11) ◽  
pp. 1839-1854 ◽  
Author(s):  
V. B. SEMIKOZ ◽  
D. D. SOKOLOFF

Role of cosmological magnetic field and cosmological magnetic helicity for astrophysics is considered. We discuss possible mechanisms for cosmological magnetic field production in the early universe as well as upper observational estimate for such field. The general conclusion is that a substantial cosmological field with a non-vanishing magnetic helicity can be generated in the early universe and survive up to the epoch of galaxy formation.


2010 ◽  
Vol 6 (S274) ◽  
pp. 464-466
Author(s):  
Simon Candelaresi ◽  
Axel Brandenburg

AbstractIn turbulent dynamos the production of large-scale magnetic fields is accompanied by a separation of magnetic helicity in scale. The large- and small-scale parts increase in magnitude. The small-scale part can eventually work against the dynamo and quench it, especially at high magnetic Reynolds numbers. A one-dimensional mean-field model of a dynamo is presented where diffusive magnetic helicity fluxes within the domain are important. It turns out that this effect helps to alleviate the quenching. Here we show that internal magnetic helicity fluxes, even within one hemisphere, can be important for alleviating catastrophic quenching.


2002 ◽  
Vol 12 ◽  
pp. 736-738
Author(s):  
Eric G. Blackman ◽  
George B. Field

AbstractMean field dynamos may explain the origin of large scale magnetic fields of galaxies, but controversy arises over the extent of dynamo quenching by the growing field. Here we explain how apparently conflicting results may be mutually consistent, by showing the role of magnetic helicity conservation and boundary terms usually neglected. We estimate the associated magnetic energy flowing out of the Galaxy but emphasize that the mechanism of field escape needs to be addressed.


2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2007 ◽  
Vol 18 (16) ◽  
pp. 165606 ◽  
Author(s):  
E K Athanassiou ◽  
P Grossmann ◽  
R N Grass ◽  
W J Stark

Sign in / Sign up

Export Citation Format

Share Document