Novel Random Mutagenesis Method for Directed Evolution

Author(s):  
Hong Feng ◽  
Hai-Yan Wang ◽  
Hong-Yan Zhao
2019 ◽  
Author(s):  
Huifang Xu ◽  
Weinan Liang ◽  
Linlin Ning ◽  
Yuanyuan Jiang ◽  
Wenxia Yang ◽  
...  

P450 fatty acid decarboxylases (FADCs) have recently been attracting considerable attention owing to their one-step direct production of industrially important 1-alkenes from biologically abundant feedstock free fatty acids under mild conditions. However, attempts to improve the catalytic activity of FADCs have met with little success. Protein engineering has been limited to selected residues and small mutant libraries due to lack of an effective high-throughput screening (HTS) method. Here, we devise a catalase-deficient <i>Escherichia coli</i> host strain and report an HTS approach based on colorimetric detection of H<sub>2</sub>O<sub>2</sub>-consumption activity of FADCs. Directed evolution enabled by this method has led to effective identification for the first time of improved FADC variants for medium-chain 1-alkene production from both DNA shuffling and random mutagenesis libraries. Advantageously, this screening method can be extended to other enzymes that stoichiometrically utilize H<sub>2</sub>O<sub>2</sub> as co-substrate.


Author(s):  
Thorsten Eggert ◽  
Manfred Reetz ◽  
Karl-Erich Jaeger

2018 ◽  
Vol 19 (10) ◽  
pp. 2989 ◽  
Author(s):  
Ji Zhang ◽  
Fuying Ma ◽  
Xiaoyu Zhang ◽  
Anli Geng

Laccases have great potential for industrial applications due to their green catalytic properties and broad substrate specificities, and various studies have attempted to improve the catalytic performance of these enzymes. Here, to the best of our knowledge, we firstly report the directed evolution of a homodimeric laccase from Cerrena unicolor BBP6 fused with α-factor prepro-leader that was engineered through random mutagenesis followed by in vivo assembly in Saccharomyces cerevisiae. Three evolved fusion variants selected from ~3500 clones presented 31- to 37-fold increases in total laccase activity, with better thermostability and broader pH profiles. The evolved α-factor prepro-leader enhanced laccase expression levels by up to 2.4-fold. Protein model analysis of these variants reveals that the beneficial mutations have influences on protein pKa shift, subunit interaction, substrate entrance, and C-terminal function.


RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 8934-8934
Author(s):  
Hailin Chen ◽  
Changqing Liu ◽  
Meijie Li ◽  
Haibo Zhang ◽  
Mo Xian ◽  
...  

Correction for ‘Directed evolution of mevalonate kinase in Escherichia coli by random mutagenesis for improved lycopene’ by Hailin Chen et al., RSC Adv., 2018, 8, 15021–15028.


RSC Advances ◽  
2018 ◽  
Vol 8 (27) ◽  
pp. 15021-15028 ◽  
Author(s):  
Hailin Chen ◽  
Changqing Liu ◽  
Meijie Li ◽  
Haibo Zhang ◽  
Mo Xian ◽  
...  

Lycopene is a terpenoid pigment that has diverse applications in the fields of food and medicine.


2019 ◽  
Author(s):  
Alexander Schmidt ◽  
Alexey Shvetsov ◽  
Elena Soboleva ◽  
Yury Kil ◽  
Vladimir Sergeev ◽  
...  

AbstractNovel thermostable forms of glucoamylase (GA) from filamentous fungus Aspergillus awamori X100 were constructed using the directed evolution approach based on random mutagenesis by error-prone PCR of the catalytic domain region of glucoamylase gene with its localization on a new episomal expression vector pPEHα in Pichia pastoris cells. Of 3000 yeast transformants screened, six new thermostable GA mutants with amino acid substitutions Val301Asp, Thr390Ala, Thr390Ala/Ser436Pro, Leu7Met/His391Tyr, Asp9His/Ile82Phe, Ser8Arg/Gln338Leu were identified and studied. To estimate the effect of every single substitution in the double mutants, we have constructed an appropriate single mutants of GA by site-directed mutagenesis and analyzed their thermal properties. Results of the analysis showed that only Ile82Phe and Ser8Arg mutations caused an increased thermostability. While Leu7Met and Asp9His mutations decreased the thermal stability of GA, and Gln338Leu had little effect, the synergistic effect of double mutant forms Leu7Met/His391Tyr, Asp9His/Ile82Phe and Ser8Arg/Gln338Leu revealed the significant thermostability improvement as compared to wild type GA.


2005 ◽  
Vol 71 (10) ◽  
pp. 5728-5734 ◽  
Author(s):  
Tyler W. Johannes ◽  
Ryan D. Woodyer ◽  
Huimin Zhao

ABSTRACT NAD(P)H-dependent oxidoreductases are valuable tools for synthesis of chiral compounds. The expense of the cofactors, however, requires in situ cofactor regeneration for preparative applications. We have attempted to develop an enzymatic system based on phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri to regenerate the reduced nicotinamide cofactors NADH and NADPH. Here we report the use of directed evolution to address one of the main limitations with the wild-type PTDH enzyme, its low stability. After three rounds of random mutagenesis and high-throughput screening, 12 thermostabilizing amino acid substitutions were identified. These 12 mutations were combined by site-directed mutagenesis, resulting in a mutant whose T 50 is 20°C higher and half-life of thermal inactivation at 45°C is >7,000-fold greater than that of the parent PTDH. The engineered PTDH has a half-life at 50°C that is 2.4-fold greater than the Candida boidinii formate dehydrogenase, an enzyme widely used for NADH regeneration. In addition, its catalytic efficiency is slightly higher than that of the parent PTDH. Various mechanisms of thermostabilization were identified using molecular modeling. The improved stability and effectiveness of the final mutant were shown using the industrially important bioconversion of trimethylpyruvate to l-tert-leucine. The engineered PTDH will be useful in NAD(P)H regeneration for industrial biocatalysis.


2002 ◽  
Vol 68 (7) ◽  
pp. 3582-3587 ◽  
Author(s):  
Tjibbe Bosma ◽  
Jirí Damborský ◽  
Gerhard Stucki ◽  
Dick B. Janssen

ABSTRACT Using a combined strategy of random mutagenesis of haloalkane dehalogenase and genetic engineering of a chloropropanol-utilizing bacterium, we constructed an organism that is capable of growth on 1,2,3-trichloropropane (TCP). This highly toxic and recalcitrant compound is a waste product generated from the manufacture of the industrial chemical epichlorohydrin. Attempts to select and enrich bacterial cultures that can degrade TCP from environmental samples have repeatedly been unsuccessful, prohibiting the development of a biological process for groundwater treatment. The critical step in the aerobic degradation of TCP is the initial dehalogenation to 2,3-dichloro-1-propanol. We used random mutagenesis and screening on eosin-methylene blue agar plates to improve the activity on TCP of the haloalkane dehalogenase from Rhodococcus sp. m15-3 (DhaA). A second-generation mutant containing two amino acid substitutions, Cys176Tyr and Tyr273Phe, was nearly eight times more efficient in dehalogenating TCP than wild-type dehalogenase. Molecular modeling of the mutant dehalogenase indicated that the Cys176Tyr mutation has a global effect on the active-site structure, allowing a more productive binding of TCP within the active site, which was further fine tuned by Tyr273Phe. The evolved haloalkane dehalogenase was expressed under control of a constitutive promoter in the 2,3-dichloro-1-propanol-utilizing bacterium Agrobacterium radiobacter AD1, and the resulting strain was able to utilize TCP as the sole carbon and energy source. These results demonstrated that directed evolution of a key catabolic enzyme and its subsequent recruitment by a suitable host organism can be used for the construction of bacteria for the degradation of a toxic and environmentally recalcitrant chemical.


Sign in / Sign up

Export Citation Format

Share Document