scholarly journals Directed Evolution of a Homodimeric Laccase from Cerrena unicolor BBP6 by Random Mutagenesis and In Vivo Assembly

2018 ◽  
Vol 19 (10) ◽  
pp. 2989 ◽  
Author(s):  
Ji Zhang ◽  
Fuying Ma ◽  
Xiaoyu Zhang ◽  
Anli Geng

Laccases have great potential for industrial applications due to their green catalytic properties and broad substrate specificities, and various studies have attempted to improve the catalytic performance of these enzymes. Here, to the best of our knowledge, we firstly report the directed evolution of a homodimeric laccase from Cerrena unicolor BBP6 fused with α-factor prepro-leader that was engineered through random mutagenesis followed by in vivo assembly in Saccharomyces cerevisiae. Three evolved fusion variants selected from ~3500 clones presented 31- to 37-fold increases in total laccase activity, with better thermostability and broader pH profiles. The evolved α-factor prepro-leader enhanced laccase expression levels by up to 2.4-fold. Protein model analysis of these variants reveals that the beneficial mutations have influences on protein pKa shift, subunit interaction, substrate entrance, and C-terminal function.


Author(s):  
Farooq Syed ◽  
Mujeeb Khan ◽  
Mohammed Rafi Shaik ◽  
Mufsir Kuniyil ◽  
M Rafiq Siddiqui ◽  
...  

In this study, we reported the eco-friendly fabrication of Ag2O–MnO2/GRO nanocomposites by the solid-state mixing of separately prepared GRO and Ag2O–MnO2 NPs using ball milling method, a mechanochemical approach. The prepared material was studied for the catalytic effect of GRO in the system for the aerial oxidation of a variety of alcohols. It was found that the (1%)Ag2O–MnO2/(5 wt.%)GRO nanocatalyst demonstrated a high conversion ability (~100%) and excellent selectivity in the presence of O2 as a clean oxidant. The higher catalytic properties of the nanocomposite were attributed to the presence of GRO, which exhibited extraordinary catalytic properties like improved surface area, excellent chemical compatibility, and stability, as well as the introduction of several defects in the obtained nanocomposite that enhance the catalytic performance. The specific activity of 13.3 mmol·g−1·h−1 is obtained for the catalyst i.e. (1%)Ag2O–MnO2/(5 wt.%)GRO, which is reportedly superior to the various other catalysts previously reported in the literature for the same conversion reaction. Our catalytic strategy was highly selective, producing only desired products with no over-oxygenation to carboxylic acids. The merits of our catalytic methodology were: (a) facile process, (b) inexpensive and clean oxidant, (c) no surfactants or nitrogenous bases were required, (d) mild catalytic conditions, (e) cost-effective recoverable catalyst, (f) complete convertibility, (g) full selectivity, (h) rapid process, and (i) applicable to virtually all types of alcohols. So, these highlights made this catalytic strategy to be highly applicable in the industrial applications for manufacturing of carbonyls. To the best of our knowledge, this was the first study of utilizing Ag2O–MnO2/GRO composite as a catalyst for the oxidation of alcohols, highlighting the catalytic efficiency of GRO.



2021 ◽  
Vol 22 (11) ◽  
pp. 5993
Author(s):  
Joan Estelrich ◽  
M. Antònia Busquets

Nanozymes, nanomaterials with enzyme-like activities, are becoming powerful competitors and potential substitutes for natural enzymes because of their excellent performance. Nanozymes offer better structural stability over their respective natural enzymes. In consequence, nanozymes exhibit promising applications in different fields such as the biomedical sector (in vivo diagnostics/and therapeutics) and the environmental sector (detection and remediation of inorganic and organic pollutants). Prussian blue nanoparticles and their analogues are metal–organic frameworks (MOF) composed of alternating ferric and ferrous irons coordinated with cyanides. Such nanoparticles benefit from excellent biocompatibility and biosafety. Besides other important properties, such as a highly porous structure, Prussian blue nanoparticles show catalytic activities due to the iron atom that acts as metal sites for the catalysis. The different states of oxidation are responsible for the multicatalytic activities of such nanoparticles, namely peroxidase-like, catalase-like, and superoxide dismutase-like activities. Depending on the catalytic performance, these nanoparticles can generate or scavenge reactive oxygen species (ROS).



Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 348 ◽  
Author(s):  
Ostovar ◽  
Rodríguez-Padrón ◽  
Saberi ◽  
Balu ◽  
Luque

Catalyst design and surface modifications of magnetic nanoparticles have become attractive strategies in order to optimize catalyzed organic reactions for industrial applications. In this work, silica-coated magnetic nanoparticles with a core-shell type structure were prepared. The obtained material was successfully functionalized with sulfathiazole groups, which can enhance its catalytic features. The material was fully characterized, using a multi-technique approach. The catalytic performance of the as-synthesized material was evaluated in 1) the oxidation of benzyl alcohol to benzaldehyde and 2) the microwave-assisted alkylation of toluene with benzyl chloride. Remarkable conversion and selectivity were obtained for both reactions and a clear improvement of the catalytic properties was observed in comparison with unmodified γ-Fe2O3/SiO2 and γ-Fe2O3. Noticeably, the catalyst displayed outstanding magnetic characteristics which facilitated its recovery and reusability.



2019 ◽  
Author(s):  
Huifang Xu ◽  
Weinan Liang ◽  
Linlin Ning ◽  
Yuanyuan Jiang ◽  
Wenxia Yang ◽  
...  

P450 fatty acid decarboxylases (FADCs) have recently been attracting considerable attention owing to their one-step direct production of industrially important 1-alkenes from biologically abundant feedstock free fatty acids under mild conditions. However, attempts to improve the catalytic activity of FADCs have met with little success. Protein engineering has been limited to selected residues and small mutant libraries due to lack of an effective high-throughput screening (HTS) method. Here, we devise a catalase-deficient <i>Escherichia coli</i> host strain and report an HTS approach based on colorimetric detection of H<sub>2</sub>O<sub>2</sub>-consumption activity of FADCs. Directed evolution enabled by this method has led to effective identification for the first time of improved FADC variants for medium-chain 1-alkene production from both DNA shuffling and random mutagenesis libraries. Advantageously, this screening method can be extended to other enzymes that stoichiometrically utilize H<sub>2</sub>O<sub>2</sub> as co-substrate.



Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Diana García-Pérez ◽  
Maria Consuelo Alvarez-Galvan ◽  
Jose M. Campos-Martin ◽  
Jose L. G. Fierro

Catalysts based on zirconia- and alumina-supported tungsten oxides (15 wt % W) with a small loading of platinum (0.3 wt % Pt) were selected to study the influence of the reduction temperature and the nature of the support on the hydroisomerization of n-dodecane. The reduction temperature has a major influence on metal dispersion, which impacts the catalytic activity. In addition, alumina and zirconia supports show different catalytic properties (mainly acid site strength and surface area), which play an important role in the conversion. The NH3-TPD profiles indicate that the acidity in alumina-based catalysts is clearly higher than that in their zirconia counterparts; this acidity can be attributed to a stronger interaction of the WOx species with alumina. The PtW/Al catalyst was found to exhibit the best catalytic performance for the hydroisomerization of n-dodecane based on its higher acidity, which was ascribed to its larger surface area relative to that of its zirconia counterparts. The selectivity for different hydrocarbons (C7–10, C11 and i-C12) was very similar for all the catalysts studied, with branched C12 hydrocarbons being the main products obtained (~80%). The temperature of 350 °C was clearly the best reduction temperature for all the catalysts studied in a trickled-bed-mode reactor.



AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanhua Yao ◽  
Guimei Zhou ◽  
Yonghui Lin ◽  
Xinqi Xu ◽  
Jie Yang

Abstract Laccases are a class of multi-copper oxidases with important industrial values. A thermotolerant laccase produced by a basidiomycete fungal strain Cerrena unicolor CGMCC 5.1011 was studied. With glycerin and peptone as the carbon and nitrogen sources, respectively, a maximal laccase activity of 121.7 U/mL was attained after cultivation in the shaking flask for 15 days. Transcriptomics analysis revealed an expressed laccase gene family of 12 members in C. unicolor strain CGMCC 5.1011, and the gene and cDNA sequences were cloned. A glycosylated laccase was purified from the fermentation broth of Cerrena unicolor CGMCC 5.1011 and corresponded to Lac2 based on MALDI-TOF MS/MS identification. Lac2 was stable at pH 5.0 and above, and was resistant to organic solvents. Lac2 displayed remarkable thermostability, with half-life time of 1.67 h at 70 ºC. Consistently, Lac2 was able to completely decolorize malachite green (MG) at high temperatures, whereas Lac7 from Cerrena sp. HYB07 resulted in accumulation of colored MG transformation intermediates. Molecular dynamics simulation of Lac2 was conducted, and possible mechanisms underlying Lac2 thermostability were discussed. The robustness of C. unicolor CGMCC 5.1011 laccase would not only be useful for industrial applications, but also provide a template for future work to develop thermostable laccases.



Author(s):  
Yangyang Ren ◽  
Chuanliang Li ◽  
Baosong Li ◽  
Fan Gao ◽  
Xinghua Zhang ◽  
...  

PtPd nanoframes with excellent catalytic properties were obtained by etching Pd@PdPt core–shell RDs with Fe3+ in an acid environment.



Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 468
Author(s):  
Anna Pawlik ◽  
Beata Ciołek ◽  
Justyna Sulej ◽  
Andrzej Mazur ◽  
Przemysław Grela ◽  
...  

A white rot fungus Cerrena unicolor has been identified as an important source of laccase, unfortunately regulation of this enzyme genes expression is poorly understood. Using 1D and 2D PAGE and LC-MS/MS, laccase isoenzymes were investigated in the liquid filtrate of C. unicolor culture. The level of expression of laccase genes was measured using qPCR. The elevated concentrations of copper and manganese in the medium caused greatest change in genes expression and three laccase transcripts were significantly affected after culture temperature was decreased from 28 to 4 °C or increased to 40 °C. The small differences in the PAGE band intensities of individual laccase proteins were also observed, indicating that given compound affect particular laccase’s transcript. Analyses of laccase-specific activity, at all tested conditions, showed the increased activities as compared to the control, suggesting that enzyme is regulated at the post-translational stage. We observed that the aspartic protease purified from C. unicolor, significantly stimulate laccase activity. Moreover, electrochemical analysis of protease-treated laccase sample had 5 times higher redox peaks. The obtained results indicate that laccases released by C. unicolor are regulated at transcriptional, translational, and at the post-translational steps of gene expression helping fungus adapt to the environmental changes.



2021 ◽  
Vol 22 (3) ◽  
pp. 1157
Author(s):  
Pablo Aza ◽  
Felipe de Salas ◽  
Gonzalo Molpeceres ◽  
David Rodríguez-Escribano ◽  
Iñigo de la Fuente ◽  
...  

Laccases secreted by saprotrophic basidiomycete fungi are versatile biocatalysts able to oxidize a wide range of aromatic compounds using oxygen as the sole requirement. Saccharomyces cerevisiae is a preferred host for engineering fungal laccases. To assist the difficult secretion of active enzymes by yeast, the native signal peptide is usually replaced by the preproleader of S. cerevisiae alfa mating factor (MFα1). However, in most cases, only basal enzyme levels are obtained. During directed evolution in S. cerevisiae of laccases fused to the α-factor preproleader, we demonstrated that mutations accumulated in the signal peptide notably raised enzyme secretion. Here we describe different protein engineering approaches carried out to enhance the laccase activity detected in the liquid extracts of S. cerevisiae cultures. We demonstrate the improved secretion of native and engineered laccases by using the fittest mutated α-factor preproleader obtained through successive laccase evolution campaigns in our lab. Special attention is also paid to the role of protein N-glycosylation in laccase production and properties, and to the introduction of conserved amino acids through consensus design enabling the expression of certain laccases otherwise not produced by the yeast. Finally, we revise the contribution of mutations accumulated in laccase coding sequence (CDS) during previous directed evolution campaigns that facilitate enzyme production.



2013 ◽  
Vol 740 ◽  
pp. 565-569
Author(s):  
Xiao Xiao Meng ◽  
Mao Xiang Jing ◽  
Feng Lin He ◽  
Xiang Qian Shen

The catalysts La0.8K0.2FeO3(LKFO), La0.8K0.2Fe0.7Mn0.3O3(LKFMO) and La0.8K0.2Fe0.67Mn0.3Pt0.03O3(LKFMPO) were prepared by the citrate-gel process and the catalyst-coated honeycomb ceramic devices were prepared by the citrate-gel assisted dip-coating method. All the catalysts have a high performance on the simultaneous removal of NOxand soot at a temperature range of 200 to 400°C under the practical diesel exhaust emission. The obvious catalytic improvement is largely due to the effects of ions substitution, pore structure and microstructural characteristics of the catalysts. The catalytic performance order is LKFMPO > LKFMO > LKFO. Among them the LKFMPO catalyst shows the best catalytic properties, especially in the removal of NOx, with a maximum conversion rate of NOx(21.2%).



Sign in / Sign up

Export Citation Format

Share Document