Frictionless Contact Problems

Author(s):  
Zdeněk Dostál ◽  
Tomáš Kozubek ◽  
Vít Vondrák
Author(s):  
Gustavo C. Buscaglia ◽  
Ricardo Dur�n ◽  
Eduardo A. Fancello ◽  
Ra�l A. Feij�o ◽  
Claudio Padra

1975 ◽  
Vol 42 (1) ◽  
pp. 136-140 ◽  
Author(s):  
M. B. Civelek ◽  
F. Erdogan

The paper presents a technique for solving the plane frictionless contact problems in the presence of gravity and/or uniform clamping pressure. The technique is described by applying it to a simple problem of lifting of an elastic layer lying on a horizontal, rigid, frictionless subspace by means of a concentrated vertical load. First, the problem of continuous contact is considered and the critical value of the load corresponding to the initiation of interface separation is determined. Then the mixed boundary-value problem of discontinuous contact is formulated in terms of a singular integral equation by closely following a technique developed for crack problems. The numerical results include the contact stress distribution and the length of separation region. One of the main conclusions of the study is that neither the separation length nor the contact stresses are dependent on the elastic constants of the layer.


1982 ◽  
Vol 18 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Faten Faheem Mahmoud ◽  
Nicholas J. Salamon ◽  
Walter R. Marks

1970 ◽  
Vol 37 (4) ◽  
pp. 965-970 ◽  
Author(s):  
J. Dundurs ◽  
M. Stippes

The dependence of stresses on the elastic constants is explored in frictionless contact problems principally for the case when the contacting bodies are made of the same material and the deformations are induced by prescribed surface tractions. The strongest results can be obtained for problems with contacts that either recede or remain stationary upon loading. In such problems, the stresses are proportional to the applied tractions and the extent of contact is independent of the level of loading. Furthermore, it is shown that the Michell result regarding the dependence of stresses on Poisson’s ratio carries over to plane contact problems with receding and stationary contacts. In three and two-dimensional problems with advancing contacts, it is possible to establish certain rules for scaling displacements and stresses.


2006 ◽  
Vol 2006 ◽  
pp. 1-22 ◽  
Author(s):  
Mohamed Selmani ◽  
Mircea Sofonea

1983 ◽  
Vol 105 (2) ◽  
pp. 242-246 ◽  
Author(s):  
W. R. Marks ◽  
N. J. Salamon

The solution of elastic bodies in contact through the application of a conjugate gradient technique integrated with a finite element computer code is discussed. This approach is general, easily applied, and reasonably efficient. Furthermore the solution method is compatible with existing finite element computer programs. The necessary algorithm for use of the technique is described in detail. Numerical examples of two-dimensional frictionless contact problems are presented. It is found that the extent of the contact region and the displacements and stresses throughout the contacting bodies can be economically computed with precision.


Sign in / Sign up

Export Citation Format

Share Document