RNA FISH to Study Zygotic Genome Activation in Early Mouse Embryos

Author(s):  
Noémie Ranisavljevic ◽  
Ikuhiro Okamoto ◽  
Edith Heard ◽  
Katia Ancelin
2018 ◽  
Vol 64 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Chika HIGUCHI ◽  
Natsumi SHIMIZU ◽  
Seung-Wook SHIN ◽  
Kohtaro MORITA ◽  
Kouhei NAGAI ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e18310 ◽  
Author(s):  
Franziska Rother ◽  
Tatiana Shmidt ◽  
Elena Popova ◽  
Alexander Krivokharchenko ◽  
Stefanie Hügel ◽  
...  

Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Mingtian Deng ◽  
Baobao Chen ◽  
Zifei Liu ◽  
Yu Cai ◽  
Yongjie Wan ◽  
...  

SummaryMinor and major zygotic genome activation (ZGA) are crucial for preimplantation development. During this process, histone variants and methylation influence chromatin accessibility and consequently regulated the expression of zygotic genes. However, the detailed exchanges of these modifications during ZGA remain to be determined. In the present study, the epigenetic modifications of histone 3 on lysine 9 (H3K9), 27 (H3K27) and 36 (H3K36), as well as four histone variants were determined during minor and major ZGA and in post-ZGA stages of mouse embryos. Firstly, microH2A1, H3K27me3 and H3K36me3 were asymmetrically stained in the female pronucleus during minor ZGA but lost staining in major ZGA. Secondly, H3K9me2 and H3K9me3 were strongly stained in the female pronucleus, but weakly stained in the male pronucleus and disappeared after ZGA. Thirdly, H2A.Z and H3.3 were symmetrically stained in male and female pronuclei during minor ZGA. Moreover, H3K27me2 was not statistically changed during mouse early development, while H3K36me2 was only detected in 2- and 4-cell embryos. In conclusion, our data revealed dynamics of histone methylation and variants during mice ZGA and provided details of their exchange in mice embryogenesis. Moreover, we further inferred that macroH2A1, H2A.Z, H3K9me2/3 and H3K27me2/3 may play crucial roles during mouse ZGA.


Zygote ◽  
2006 ◽  
Vol 14 (3) ◽  
pp. 209-215 ◽  
Author(s):  
Kai Wang ◽  
Feng Sun ◽  
Hui Z. Sheng

SummaryTATA binding protein (TBP) associated factor 1 (TAF1) is a member of the general transcription machinery. Interference in the function of TAF1 causes a broad transcriptional defect in early development. To explore possible roles of TAF1 in embryonic transcriptional silence and zygotic genome activation, we examined the expression of TAF1 in 1-cell mouse embryos. Using an immunofluorescence assay, TAF1 was not detected in embryos in the first few hours after fertilization. TAF1 appeared in pronuclei 6 h post-fertilization and reached a relatively high level before zygotic genome activation. These data show that besides TBP, another critical member of the general transcription machinery such as TAF1 is also absent or at an extremely low level at the outset of development. Combined deficiency in critical members of the general transcription machinery may account for embryonic transcriptional silence.


2019 ◽  
Vol 48 (2) ◽  
pp. 879-894 ◽  
Author(s):  
Qian-Qian Sha ◽  
Ye-Zhang Zhu ◽  
Sen Li ◽  
Yu Jiang ◽  
Lu Chen ◽  
...  

Abstract An important event of the maternal-to-zygotic transition (MZT) in animal embryos is the elimination of a subset of the maternal transcripts that accumulated during oogenesis. In both invertebrates and vertebrates, a maternally encoded mRNA decay pathway (M-decay) acts before zygotic genome activation (ZGA) while a second pathway, which requires zygotic transcription, subsequently clears additional mRNAs (Z-decay). To date the mechanisms that activate the Z-decay pathway in mammalian early embryos have not been investigated. Here, we identify murine maternal transcripts that are degraded after ZGA and show that inhibition of de novo transcription stabilizes these mRNAs in mouse embryos. We show that YAP1-TEAD4 transcription factor-mediated transcription is essential for Z-decay in mouse embryos and that TEAD4-triggered zygotic expression of terminal uridylyltransferases TUT4 and TUT7 and mRNA 3′-oligouridylation direct Z-decay. Components of the M-decay pathway, including BTG4 and the CCR4-NOT deadenylase, continue to function in Z-decay but require reinforcement from the zygotic factors for timely removal of maternal mRNAs. A long 3′-UTR and active translation confer resistance of Z-decay transcripts to M-decay during oocyte meiotic maturation. The Z-decay pathway is required for mouse embryo development beyond the four-cell stage and contributes to the developmental competence of preimplantation embryos.


Sign in / Sign up

Export Citation Format

Share Document