scholarly journals Telomere Length Analysis: A Tool for Dissecting Aging Mechanisms in Developmental Programming

Author(s):  
Jane L. Tarry-Adkins ◽  
Susan E. Ozanne
Author(s):  
Elena Zambrano ◽  
Consuelo Lomas Soria ◽  
Peter W. Nathanielsz

2021 ◽  
Vol 212 ◽  
pp. 111935
Author(s):  
Milton Quintana-Sosa ◽  
Grethel León-Mejía ◽  
Jaime Luna-Carrascal ◽  
Yurina Sh De moya ◽  
Ibeth Luna Rodríguez ◽  
...  

2005 ◽  
Vol 40 (5) ◽  
pp. 363-368 ◽  
Author(s):  
D BAIRD

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lilit Nersisyan ◽  
◽  
Maria Nikoghosyan ◽  
Arsen Arakelyan

AbstractTelomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait.


2011 ◽  
Vol 68 (10) ◽  
pp. 2053-2058 ◽  
Author(s):  
Rosamond M. Godwin ◽  
Stewart Frusher ◽  
Steven S. Montgomery ◽  
Jennifer Ovenden

Abstract Godwin, R. M., Frusher, S., Montgomery, S. S., and Ovenden, J. 2011. Telomere length analysis in crustacean species: Metapenaeus macleayi, Sagmariasus verreauxi, and Jasus edwardsii. – ICES Journal of Marine Science, 68: 2053–2058. Estimates of age and growth in crustaceans have been historically problematic and presented significant challenges to researchers. Current techniques of age determination provide valuable data, but also suffer from disadvantages. Telomeric DNA has been proposed as an age biomarker because it shortens with age in some species. In this study, the feasibility of using telomere length (TL) to estimate age was examined in the school prawn Metapenaeus macleayi and the spiny lobsters Sagmariasus verreauxi and Jasus edwardsii. Carapace length (CL) was used as a surrogate for age, and terminal restriction fragment assays were used to test the relationship between TL and size. Degradation of telomeric DNA with time during storage significantly influenced TL estimates, particularly for M. macleayi. TLs obtained from species in this study were 10–20 kb. No relationship between CL and TL was detected for any of the test species, and TL did not differ between male and female M. macleayi. TLs of J. edwardsii pueruli were unexpectedly shorter than those of J. edwardsii adults. The suitability of TL as an age biomarker in crustaceans may be limited, but further research is needed to elucidate telomere dynamics in these species with their different life histories and lifespans.


Author(s):  
Andrés Canela ◽  
Peter Klatt ◽  
María A. Blasco

Gene ◽  
2015 ◽  
Vol 568 (1) ◽  
pp. 8-18
Author(s):  
Xin Zhao ◽  
Yasutaka Ueda ◽  
Sachiko Kajigaya ◽  
Glen Alaks ◽  
Marie J. Desierto ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3809-3809
Author(s):  
Fabian Beier ◽  
Ralph P Schneider ◽  
Guntram Buesche ◽  
Jens Panse ◽  
Ulrich Germing ◽  
...  

Abstract Abstract 3809 Introduction: Myelodysplastic syndromes (MDS) are heterogeneous clonal stem cell disorders characterized by ineffective hematopoiesis and an increased risk for leukemic transformation. Lenalidomide (LEN) was found to be an effective treatment particularly in a subset of MDS patients with isolated 5q minus deletion (del5q). A high proportion of these patients show erythroid response with transfusion independence and even complete cytogenetic response (CCR). However, particularly in patients not responding to LEN, disease progression to acute leukemia is observed. Accelerated telomere length shortening is regularly observed in hematopoietic stem cell disorders with increased stem cell turnover and/or altered telomere maintenance. Dysfunctional telomeres have been found to play an important role in the development of chromosomal instability and malignant transformation. The aim of this study was to investigate telomere length as a potential predictive biomarker in MDS del5q patients treated with LEN with regard to disease progression and treatment response. Methods and Patients: Telomere length (TL) was determined using confocal Q-FISH on paraffin-embedded BM biopsies of 54 MDS patients enrolled in the LEMON5 study (NCT01081431). Criteria for study inclusion were isolated del5q, transfusion dependence of at least one unit per 8 weeks and IPSS low risk and intermediate-1. TL was analyzed in a blinded fashion on specimen obtained before treatment initiation with LEN, control biopsies of 11 patients with newly diagnosed Morbus Hodgkin without BM affection were used for age-adaption of TL. At the time of this preliminary analysis, the study is ongoing, initial clinical data were available for 94% (51/54) and detailed follow up data for 63% (34/54) of the patients with a median follow up of 22 months. Mean age of the MDS patients was 68.6 years (range 40–87) and average disease duration before enrolment was 2.9 years. Results: We found that TL of the 54 MDS patients was significantly shorter compared to the age-adjusted TL (−0.57 kb, p=0.02, n=54). Interestingly, analysis according to the respective IPSS showed significant shorter telomeres in the low risk group (−0.91 kb, p=0.04, n=27) than in the intermediate-1 group (−0.55 kb, p=0.24, n=19). Focusing on the peripheral blood counts, cut-off values were set according to the distribution pattern representing the approximate median value. Patients with ANC counts <2000/μl (−0.98 kb, p=0.03, n=27), haemoglobin values <9g/dl (−0.89 kb, p=0.02, n=26) and platelets counts <300/nl (−0.87 kb, p=0.01, n=27) had significantly shortened telomeres compared to the age-adjusted controls. In contrast, patients with ANC counts >2000/μl (0.06 kb, p=0.9, n=20), haemoglobin >9g/dl (−0.23 kb, p=0.23, n=25) and platelet counts >300/nl (−0.07 kb, p=0.58, n=24) did not differ from the age-adjusted TL. Furthermore, patients with a history of more than 2 years of MDS had significantly shortened age-adjusted telomere length (−0.94 kb, p=0.02, n=26), but that was not the case in patients with a short disease duration (<2 years; −0.32 kb, p=0.36, n=28). Interestingly, with regards to response to LEN, patients later achieving a CCR under LEN had significantly shortened TL at treatment initiation (−1.47 kb, n=14, p=0.005) whereas this was not the case in patients with no response, relapse or progressive disease during follow-up (−0.23 kb, n=20, p=0.62). Furthermore, correlation with treatment duration showed that patients receiving more than 12 cycles of LEN (in which 93%, i.e. 13/14 patients were responding) had significantly shorter telomeres before start of LEN (−1.41 kb, n=17, p=0.02) compared to the group of patients with less than 12 cycles (0.22 kb, n=14) in which 41%, i.e. 7/17 patients were responding. Conclusions: Patients with MDS and isolated del5q undergo significant telomere shortening. Using telomere length analysis on paraffin-embedded BM biopsies using confocal Q-FISH, we were able to identify a subgroup of patients with lower peripheral blood counts and accelerated TL shortening that seemed to preferentially profit from LEN treatment. In summary and pending further confirmation with longer follow up of this preliminary analysis within the ongoing LeMon5 study, we conclude that telomere length analysis may identify a distinct biological subentity of MDS del5q patients more likely to benefit from treatment with LEN. Disclosures: Germing: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Brümmendorf:Celgene: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document