scholarly journals Single-Cell Library Preparation of iPSC-Derived Neural Stem Cells

Author(s):  
Jeffrey Kim ◽  
Marcel M. Daadi
Cell ◽  
2015 ◽  
Vol 161 (5) ◽  
pp. 1175-1186 ◽  
Author(s):  
Yuping Luo ◽  
Volkan Coskun ◽  
Aibing Liang ◽  
Juehua Yu ◽  
Liming Cheng ◽  
...  

Methods ◽  
2018 ◽  
Vol 133 ◽  
pp. 81-90 ◽  
Author(s):  
Katja M. Piltti ◽  
Brian J. Cummings ◽  
Krystal Carta ◽  
Ayla Manughian-Peter ◽  
Colleen L. Worne ◽  
...  

2020 ◽  
Author(s):  
Manuel Göpferich ◽  
Nikhil Oommen George ◽  
Ana Domingo Muelas ◽  
Alex Bizyn ◽  
Rosa Pascual ◽  
...  

SUMMARYAutism spectrum disorder (ASD) is a neurodevelopmental disease affecting social behavior. Many of the high-confident ASD risk genes relate to mRNA translation. Specifically, many of these genes are involved in regulation of gene expression for subcellular compartmentalization of proteins1. Cis-regulatory motifs that often localize to 3’- and 5’-untranslated regions (UTRs) offer an additional path for posttranscriptional control of gene expression. Alternative cleavage and polyadenylation (APA) affect 3’UTR length thereby influencing the presence or absence of regulatory elements. However, APA has not yet been addressed in the context of neurodevelopmental disorders. Here we used single cell 3’end sequencing to examine changes in 3’UTRs along the differentiation from neural stem cells (NSCs) to neuroblasts within the adult brain. We identified many APA events in genes involved in neurodevelopment, many of them being high confidence ASD risk genes. Further, analysis of 3’UTR lengths in single cells from ASD and healthy individuals detected longer 3’UTRs in ASD patients. Motif analysis of modulated 3’UTRs in the mouse adult neurogenic lineage and ASD-patients revealed enrichment of the cytoplasmic and polyadenylation element (CPE). This motif is bound by CPE binding protein 4 (CPEB4). In human and mouse data sets we observed co-regulation of CPEB4 and the CPEB-binding synaptic adhesion molecule amyloid beta precursor-like protein 1 (APLP1). We show that mice deficient in APLP1 show aberrant regulation of APA, decreased number of neural stem cells, and autistic-like traits. Our findings indicate that APA is used for control of gene expression along neuronal differentiation and is altered in ASD patients.


2017 ◽  
Vol 14 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Hans Zahn ◽  
Adi Steif ◽  
Emma Laks ◽  
Peter Eirew ◽  
Michael VanInsberghe ◽  
...  

2016 ◽  
Vol 11 (8) ◽  
pp. 1360-1370 ◽  
Author(s):  
Joana S Barbosa ◽  
Rossella Di Giaimo ◽  
Magdalena Götz ◽  
Jovica Ninkovic

2020 ◽  
Author(s):  
Kasum Azim ◽  
Filippo Calzolari ◽  
Martina Cantone ◽  
Rainer Akkermann ◽  
Julio Vera ◽  
...  

AbstractThe subventricular zone (SVZ) is the largest neurogenic niche in the adult forebrain. Notably, neural stem cells (NSCs) of the SVZ generate not only neurons, but also oligodendrocytes, the myelin-forming cells of the central nervous system. Transcriptomic studies have provided detailed knowledge of the molecular events that regulate neurogenesis, but little is understood about adult oligodendrogenesis from SVZ-NSCs. To address this, we performed in-depth single-cell transcriptomic analyses to resolve the major differences in neuronal and oligodendroglial lineages derived from the adult SVZ. A hallmark of adult oligodendrogenesis was the stage-specific expression of transcriptional modulators that regulate developmental oligodendrogenesis. Notably, divergence of the oligodendroglial lineage was distinguished by Wnt-Notch and angiogenesis-related signaling, whereas G-protein-coupled receptor signaling pathways were the major signature observed in the neurogenic lineage. Moreover, in-depth gene regulatory network analysis identified key stage-specific master regulators of the oligodendrocyte lineage and revealed new mechanisms by which signaling pathways interact with transcriptional networks to control lineage progression. Our work provides an integrated view of the multi-step differentiation process leading from NSCs to mature oligodendrocytes, by linking environmental signals to known and novel transcriptional mechanisms orchestrating oligodendrogenesis.Main pointsDistinct adult NSC populations giving rise to either oligodendrocytes or neurons can be identified by the expression of transcription factors.Gene regulatory control of oligodendrogenesis is a major fate-determinant for their generation.


Sign in / Sign up

Export Citation Format

Share Document