scholarly journals Resolving the transcriptional transitions associated with oligodendrocyte generation from adult neural stem cells by single cell sequencing

2020 ◽  
Author(s):  
Kasum Azim ◽  
Filippo Calzolari ◽  
Martina Cantone ◽  
Rainer Akkermann ◽  
Julio Vera ◽  
...  

AbstractThe subventricular zone (SVZ) is the largest neurogenic niche in the adult forebrain. Notably, neural stem cells (NSCs) of the SVZ generate not only neurons, but also oligodendrocytes, the myelin-forming cells of the central nervous system. Transcriptomic studies have provided detailed knowledge of the molecular events that regulate neurogenesis, but little is understood about adult oligodendrogenesis from SVZ-NSCs. To address this, we performed in-depth single-cell transcriptomic analyses to resolve the major differences in neuronal and oligodendroglial lineages derived from the adult SVZ. A hallmark of adult oligodendrogenesis was the stage-specific expression of transcriptional modulators that regulate developmental oligodendrogenesis. Notably, divergence of the oligodendroglial lineage was distinguished by Wnt-Notch and angiogenesis-related signaling, whereas G-protein-coupled receptor signaling pathways were the major signature observed in the neurogenic lineage. Moreover, in-depth gene regulatory network analysis identified key stage-specific master regulators of the oligodendrocyte lineage and revealed new mechanisms by which signaling pathways interact with transcriptional networks to control lineage progression. Our work provides an integrated view of the multi-step differentiation process leading from NSCs to mature oligodendrocytes, by linking environmental signals to known and novel transcriptional mechanisms orchestrating oligodendrogenesis.Main pointsDistinct adult NSC populations giving rise to either oligodendrocytes or neurons can be identified by the expression of transcription factors.Gene regulatory control of oligodendrogenesis is a major fate-determinant for their generation.

Cell Research ◽  
2008 ◽  
Vol 18 (S1) ◽  
pp. S59-S59
Author(s):  
Zhifeng Deng ◽  
Zhumin Liu ◽  
Wei Tu ◽  
Yang Wang ◽  
Yuanlei Lou

Cell ◽  
2015 ◽  
Vol 161 (5) ◽  
pp. 1175-1186 ◽  
Author(s):  
Yuping Luo ◽  
Volkan Coskun ◽  
Aibing Liang ◽  
Juehua Yu ◽  
Liming Cheng ◽  
...  

Methods ◽  
2018 ◽  
Vol 133 ◽  
pp. 81-90 ◽  
Author(s):  
Katja M. Piltti ◽  
Brian J. Cummings ◽  
Krystal Carta ◽  
Ayla Manughian-Peter ◽  
Colleen L. Worne ◽  
...  

Author(s):  
Srivathsa S. Magadi ◽  
Chrysanthi Voutyraki ◽  
Gerasimos Anagnostopoulos ◽  
Evanthia Zacharioudaki ◽  
Ioanna K. Poutakidou ◽  
...  

ABSTRACTNeural stem cells divide during embryogenesis and post embryonic development to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that in every asymmetric cell division progenitors send a Delta-Notch signal back to their sibling stem cells. Here we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. Our results suggest that Notch signalling sets up a network of mutually repressing stemness and anti-stemness transcription factors, which include Hes proteins and Zfh1, respectively. This mutual repression ensures robust transition to neuronal and glial differentiation and its perturbation can lead to malignant transformation.


2020 ◽  
Author(s):  
Manuel Göpferich ◽  
Nikhil Oommen George ◽  
Ana Domingo Muelas ◽  
Alex Bizyn ◽  
Rosa Pascual ◽  
...  

SUMMARYAutism spectrum disorder (ASD) is a neurodevelopmental disease affecting social behavior. Many of the high-confident ASD risk genes relate to mRNA translation. Specifically, many of these genes are involved in regulation of gene expression for subcellular compartmentalization of proteins1. Cis-regulatory motifs that often localize to 3’- and 5’-untranslated regions (UTRs) offer an additional path for posttranscriptional control of gene expression. Alternative cleavage and polyadenylation (APA) affect 3’UTR length thereby influencing the presence or absence of regulatory elements. However, APA has not yet been addressed in the context of neurodevelopmental disorders. Here we used single cell 3’end sequencing to examine changes in 3’UTRs along the differentiation from neural stem cells (NSCs) to neuroblasts within the adult brain. We identified many APA events in genes involved in neurodevelopment, many of them being high confidence ASD risk genes. Further, analysis of 3’UTR lengths in single cells from ASD and healthy individuals detected longer 3’UTRs in ASD patients. Motif analysis of modulated 3’UTRs in the mouse adult neurogenic lineage and ASD-patients revealed enrichment of the cytoplasmic and polyadenylation element (CPE). This motif is bound by CPE binding protein 4 (CPEB4). In human and mouse data sets we observed co-regulation of CPEB4 and the CPEB-binding synaptic adhesion molecule amyloid beta precursor-like protein 1 (APLP1). We show that mice deficient in APLP1 show aberrant regulation of APA, decreased number of neural stem cells, and autistic-like traits. Our findings indicate that APA is used for control of gene expression along neuronal differentiation and is altered in ASD patients.


2007 ◽  
Vol 357 (4) ◽  
pp. 903-909 ◽  
Author(s):  
Myung-Shin Lim ◽  
Sang-Hyun Nam ◽  
Sun-Jung Kim ◽  
Seog-Youn Kang ◽  
Yong-Soon Lee ◽  
...  

2019 ◽  
Vol 28 (12) ◽  
pp. 1686-1699 ◽  
Author(s):  
Chongfeng Chen ◽  
Yujia Yang ◽  
Yue Yao

Hyperbaric oxygen (HBO) therapy may promote neurological recovery from hypoxic-ischemic encephalopathy (HIE). However, the therapeutic effects of HBO and its associated mechanisms remain unknown. The canonical Wnt/β-catenin signaling pathways and bone morphogenetic protein (BMP) play important roles in mammalian nervous system development. The present study examined whether HBO stimulates the differentiation of neural stem cells (NSCs) and its effect on Wnt3/β-catenin and BMP2 signaling pathways. We showed HBO treatment (2 ATA, 60 min) promoted differentiation of NSCs into neurons and oligodendrocytes in vitro. In addition, rat hypoxic-ischemic brain damage (HIBD) tissue extracts also promoted the differentiation of NSCs into neurons and oligodendrocytes, with the advantage of reducing the number of astrocytes. These effects were most pronounced when these two were combined together. In addition, the expression of Wnt3a, BMP2, and β-catenin nuclear proteins were increased after HBO treatment. However, blockade of Wnt/β-catenin or BMP signaling inhibited NSC differentiation and reduced the expression of Wnt3a, BMP2, and β-catenin nuclear proteins. In conclusion, HBO promotes differentiation of NSCs into neurons and oligodendrocytes and reduced the number of astrocytes in vitro possibly through regulation of Wnt3/β-catenin and BMP2 signaling pathways. HBO may serve as a potential therapeutic strategy for treating HIE.


PLoS Biology ◽  
2008 ◽  
Vol 6 (10) ◽  
pp. e256 ◽  
Author(s):  
Rory Johnson ◽  
Christina Hui-leng Teh ◽  
Galih Kunarso ◽  
Kee Yew Wong ◽  
Gopalan Srinivasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document