Phase Variation of the mrp Fimbrial Promoter

Author(s):  
Melanie M. Pearson
Keyword(s):  
2020 ◽  
Vol 21 (9) ◽  
pp. 3259 ◽  
Author(s):  
Gregg S. Pettis ◽  
Aheli S. Mukerji

Vibrio vulnificus populates coastal waters around the world, where it exists freely or becomes concentrated in filter feeding mollusks. It also causes rapid and life-threatening sepsis and wound infections in humans. Of its many virulence factors, it is the V. vulnificus capsule, composed of capsular polysaccharide (CPS), that plays a critical role in evasion of the host innate immune system by conferring antiphagocytic ability and resistance to complement-mediated killing. CPS may also provoke a portion of the host inflammatory cytokine response to this bacterium. CPS production is biochemically and genetically diverse among strains of V. vulnificus, and the carbohydrate diversity of CPS is likely affected by horizontal gene transfer events that result in new combinations of biosynthetic genes. Phase variation between virulent encapsulated opaque colonial variants and attenuated translucent colonial variants, which have little or no CPS, is a common phenotype among strains of this species. One mechanism for generating acapsular variants likely involves homologous recombination between repeat sequences flanking the wzb phosphatase gene within the Group 1 CPS biosynthetic and transport operon. A considerable number of environmental, genetic, and regulatory factors have now been identified that affect CPS gene expression and CPS production in this pathogen.


2021 ◽  
Vol 11 (12) ◽  
pp. 5430
Author(s):  
Paolo Neri ◽  
Alessandro Paoli ◽  
Ciro Santus

Vibration measurements of turbomachinery components are of utmost importance to characterize the dynamic behavior of rotating machines, thus preventing undesired operating conditions. Local techniques such as strain gauges or laser Doppler vibrometers are usually adopted to collect vibration data. However, these approaches provide single-point and generally 1D measurements. The present work proposes an optical technique, which uses two low-speed cameras, a multimedia projector, and three-dimensional digital image correlation (3D-DIC) to provide full-field measurements of a bladed disk undergoing harmonic response analysis (i.e., pure sinusoidal excitation) in the kHz range. The proposed approach exploits a downsampling strategy to overcome the limitations introduced by low-speed cameras. The developed experimental setup was used to measure the response of a bladed disk subjected to an excitation frequency above 6 kHz, providing a deep insight in the deformed shapes, in terms of amplitude and phase distributions, which could not be feasible with single-point sensors. Results demonstrated the system’s effectiveness in measuring amplitudes of few microns, also evidencing blade mistuning effects. A deeper insight into the deformed shape analysis was provided by considering the phase maps on the entire blisk geometry, and phase variation lines were observed on the blades for high excitation frequency.


2021 ◽  
Vol 69 (1) ◽  
pp. 825-832
Author(s):  
Kyutae Park ◽  
Byung-Wook Min
Keyword(s):  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 27928-27944
Author(s):  
Lijuan Su ◽  
Jonathan Munoz-Enano ◽  
Paris Velez ◽  
Marta Gil-Barba ◽  
Pau Casacuberta ◽  
...  

1996 ◽  
Vol 35 (Part 2, No. 11B) ◽  
pp. L1473-L1475 ◽  
Author(s):  
Kuninori Kitahara ◽  
Katsuyuki Suga ◽  
Akito Hara ◽  
Kazuo Nakajima

2013 ◽  
Vol 52 (22) ◽  
pp. 5460 ◽  
Author(s):  
Analucia V. Fantin ◽  
Daniel P. Willemann ◽  
Matias R. Viotti ◽  
Armando Albertazzi

2002 ◽  
Vol 70 (9) ◽  
pp. 4925-4935 ◽  
Author(s):  
Spencer A. Leigh ◽  
Kim S. Wise

ABSTRACT Initial adherence interactions between mycoplasmas and mammalian cells are important for host colonization and may contribute to subsequent pathogenic processes. Despite significant progress toward understanding the role of specialized, complex tip structures in the adherence of some mycoplasmas, particularly those that infect humans, less is known about adhesins through which other mycoplasmas of this host bind to diverse cell types, even though simpler surface components are likely to be involved. We show by flow cytometric analysis that a soluble recombinant fusion protein (FP29), representing the abundant P29 surface lipoprotein of Mycoplasma fermentans, binds human HeLa cells and inhibits M. fermentans binding to these cells, in both a quantitative and a saturable manner, whereas analogous fusion proteins representing other mycoplasma surface proteins did not. Constructs representing nested N- or C-terminal truncations of FP29 allowed initial mapping of this specific adherence function to a central region of the P29 sequence containing a 36-amino-acid disulfide loop. A derivative of FP29 containing a mutation converting one participating Cys to Ser, precluding intrachain disulfide bond formation, retained full activity. Together these results suggest that the direct interaction of M. fermentans with a ligand on the HeLa cell surface involves a limited segment of the P29 surface lipoprotein and requires neither the disulfide bond nor the contribution of adjacent portions of the protein. Earlier results indicating phase-variable display of monoclonal antibody surface epitopes on P29, now recognized to be outside this ligand binding region, raise the possibility that variation of mycoplasma surface architecture might alter the presentation of the binding region and the adherence phenotype. Preliminary results further indicated that FP29 could inhibit binding to HeLa cells by Mycoplasma hominis, a distinct human mycoplasma species displaying the phase-variable adhesin Vaa, but not that by Mycoplasma capricolum, an organism infecting caprine species. This result raises the additional, testable possibility that a common host cell ligand for two human mycoplasma species may be recognized through structurally dissimilar adhesins that undergo phase variation by two distinct mechanisms, governing protein expression (Vaa) or surface masking (P29).


Sign in / Sign up

Export Citation Format

Share Document