Using Toxins in Brain Slice Recordings

Author(s):  
Alexey Bingor ◽  
Rami Yaka
Keyword(s):  
1994 ◽  
Vol 52 (1) ◽  
pp. A11
Author(s):  
M.T. Espanol ◽  
L. Litt ◽  
L.-H. Chang ◽  
T.L. James ◽  
P.R. Weinstein ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi222-vi222
Author(s):  
Breanna Mann ◽  
Noah Bell ◽  
Denise Dunn ◽  
Scott Floyd ◽  
Shawn Hingtgen ◽  
...  

Abstract Brain cancers remain one of the greatest medical challenges. The lack of experimentally tractable models that recapitulate brain structure/function represents a major impediment. Platforms that enable functional testing in high-fidelity models are urgently needed to accelerate the identification and translation of therapies to improve outcomes for patients suffering from brain cancer. In vitro assays are often too simple and artificial while in vivo studies can be time-intensive and complicated. Our live, organotypic brain slice platform can be used to seed and grow brain cancer cell lines, allowing us to bridge the existing gap in models. These tumors can rapidly establish within the brain slice microenvironment, and morphologic features of the tumor can be seen within a short period of time. The growth, migration, and treatment dynamics of tumors seen on the slices recapitulate what is observed in vivo yet is missed by in vitro models. Additionally, the brain slice platform allows for the dual seeding of different cell lines to simulate characteristics of heterogeneous tumors. Furthermore, live brain slices with embedded tumor can be generated from tumor-bearing mice. This method allows us to quantify tumor burden more effectively and allows for treatment and retreatment of the slices to understand treatment response and resistance that may occur in vivo. This brain slice platform lays the groundwork for a new clinically relevant preclinical model which provides physiologically relevant answers in a short amount of time leading to an acceleration of therapeutic translation.


Author(s):  
Lorela Ciraku ◽  
Rebecca A. Moeller ◽  
Emily M. Esquea ◽  
Wiktoria A. Gocal ◽  
Edward J. Hartsough ◽  
...  

2009 ◽  
Vol 101 (6) ◽  
pp. 2741-2750 ◽  
Author(s):  
Li Zhang ◽  
Leo P. Renaud ◽  
Miloslav Kolaj

Burst firing mediated by a low-threshold spike (LTS) is the hallmark of many thalamic neurons. However, postburst afterhyperpolarizations (AHPs) are relatively uncommon in thalamus. We now report data from patch-clamp recordings in rat brain slice preparations that reveal an LTS-induced slow AHP (sAHP) in thalamic paraventricular (PVT) and other midline neurons, but not in ventrobasal or reticular thalamic neurons. The LTS-induced sAHP lasts 8.9 ± 0.4 s and has a novel pharmacology, with resistance to tetrodotoxin and cadmium and reduction by Ni2+ or nominally zero extracellular calcium concentration, which also attenuate both the LTS and sAHP. The sAHP is inhibited by 10 mM intracellular EGTA or by equimolar replacement of extracellular Ca2+ with Sr2+, consistent with select activation of LVA T-type Ca2+ channels and subsequent Ca2+ influx. In control media, the sAHP reverses near EK+, shifting to −78 mV in 10.1 mM [K+]o and is reduced by Ba2+ or tetraethylammonium. Although these data are consistent with opening of Ca2+-activated K+ channels, this sAHP lacks sensitivity to specific Ca2+-activated K+ channel blockers apamin, iberiotoxin, charybdotoxin, and UCL-2077. The LTS-induced sAHP is suppressed by a β-adrenoceptor agonist isoproterenol, a serotonin 5-HT7 receptor agonist 5-CT, a neuropeptide orexin-A, and by stimulation of the cAMP/protein kinase A pathway with 8-Br-cAMP and forskolin. The data suggest that PVT and certain midline thalamic neurons possess an LTS-induced sAHP that is pharmacologically distinct and may be important for information transfer in thalamic–limbic circuitry during states of attentiveness and motivation.


Sign in / Sign up

Export Citation Format

Share Document