The High-Affinity Glutamate Transporter Family

1997 ◽  
pp. 171-213 ◽  
Author(s):  
Yoshikatsu Kanai ◽  
Davide Trotti ◽  
Stephan Nussberger ◽  
Matthias A. Hediger
1996 ◽  
Vol 135 (6) ◽  
pp. 1867-1877 ◽  
Author(s):  
S Wahle ◽  
W Stoffel

The membrane topology of the high affinity, Na(+)-coupled L-glutamate/L-aspartate transporter (GLAST-1) of the central nervous system has been determined. Truncated GLAST-1 cDNA constructs encoding protein fragments with an increasing number of hydrophobic regions were fused to a cDNA encoding a reporter peptide with two N-glycosylation sites. The respective cRNA chimeras were translated in vitro and in vivo in Xenopus oocytes. Posttranslational N-glycosylation of the two reporter consensus sites monitors the number, size, and orientation of membrane-spanning domains. The results of our experiments suggest a novel 10-transmembrane domain topology of GLAST-1, a representative of the L-glutamate neurotransmitter transporter family, with its NH2 and COOH termini on the cytoplasmic side, six NH2-terminal hydrophobic transmembrane alpha-helices, and four COOH-terminal short hydrophobic domains spanning the bilayer predicted as beta-sheets.


2003 ◽  
pp. 171-214
Author(s):  
Yoshikatsu Kanai ◽  
Dauide Trotti ◽  
Stephan Nussberger ◽  
Matthias A. Hediger

1993 ◽  
Vol 3 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Richard J. Bridges ◽  
Frank E. Lovering ◽  
John M. Humphrey ◽  
Mark S. Stanley ◽  
Tracy N. Blakely ◽  
...  

2013 ◽  
Vol 34 (2-3) ◽  
pp. 108-120 ◽  
Author(s):  
Yoshikatsu Kanai ◽  
Benjamin Clémençon ◽  
Alexandre Simonin ◽  
Michele Leuenberger ◽  
Martin Lochner ◽  
...  

2002 ◽  
Vol 205 (17) ◽  
pp. 2605-2613 ◽  
Author(s):  
Richard B. Gardiner ◽  
Kyrre Ullensvang ◽  
Niels C. Danbolt ◽  
Stanley Caveney ◽  
B. Cameron Donly

SUMMARYGlutamate functions as a neurotransmitter in the central nervous system(CNS) and neuromuscular junctions in insects. High-affinity glutamate transporters are responsible for keeping the resting levels of excitatory amino acids below the synaptic activation threshold by removing them from the extracellular fluid, thereby preventing them from reaching toxic levels. Peptides representing the N- and C-terminal regions of a glutamate transporter cloned from the cabbage looper caterpillar (Trichoplusia ni) were synthesized and used to generate polyclonal antibodies. The antibodies produced immunohistochemical staining in both muscular and nervous system T. ni tissues. Neuromuscular junctions in the skeletal muscles produced the most intense labelling, but no visceral muscle or sensory nerves were labelled. In the CNS, the neuropile of the ganglia, but not the connectives, gave a diffuse staining. Electron microscopical examination of ganglia and neuromuscular junctions showed that the plasma membrane of glial cells, but not that of neurons was labelled, in agreement with the notion that most of the glutamate uptake sites in this insect are in glial cells.


1997 ◽  
Vol 273 (6) ◽  
pp. F1023-F1029 ◽  
Author(s):  
Chairat Shayakul ◽  
Yoshikatsu Kanai ◽  
Wen-Sen Lee ◽  
Dennis Brown ◽  
Jeffrey D. Rothstein ◽  
...  

Most amino acids filtered by the glomerulus are reabsorbed in the kidney via specialized transport systems. Recently, the cDNA encoding a high-affinity glutamate transporter, EAAC1, has been isolated and shown to be expressed at high levels in the kidney. To determine the potential role of EAAC1 in renal acidic amino acid reabsorption, the distribution of EAAC1 mRNA and protein in rat kidney was examined. In situ hybridization revealed that EAAC1 mRNA is expressed predominantly in S2 and S3 segments of the proximal tubules and at low levels in the inner stripe of outer medulla and inner medulla. Polyclonal antibodies raised against the carboxy terminus of EAAC1 recognized a single band of ∼70 kDa on Western blots of membrane protein from kidney cortex and medulla. Immunofluorescence microscopy revealed intense signals in the luminal membrane of S2 and S3 segments and weaker signals in S1 segments, descending thin limbs of long-loop nephrons, medullary thick ascending limbs, and distal convoluted tubules. These results are consistent with EAAC1 encoding the previously described apical high-affinity glutamate transporter in the kidney that mediates reabsorption of acidic amino acids in tubules beyond early proximal tubule S1 segments. Potential additional roles of EAAC1 in acid/base balance, cell volume regulation, and amino acid metabolism are discussed.


2013 ◽  
Vol 93 (4) ◽  
pp. 1621-1657 ◽  
Author(s):  
Robert J. Vandenberg ◽  
Renae M. Ryan

l-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.


2005 ◽  
Vol 68 (4) ◽  
pp. 974-982 ◽  
Author(s):  
John Dunlop ◽  
H. Beal McIlvain ◽  
Tikva A. Carrick ◽  
Brian Jow ◽  
Qiang Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document