Dynamic Assessment of Cell-Matrix Mechanical Interactions in Three-Dimensional Culture

Author(s):  
W. Matthew Petroll
2020 ◽  
Vol 11 ◽  
pp. 204173142093340 ◽  
Author(s):  
Chengye Zhang ◽  
Zhaoting Yang ◽  
Da-Long Dong ◽  
Tae-Su Jang ◽  
Jonathan C. Knowles ◽  
...  

Cancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an ex vivo microenvironment that cancer stem cells experience under in vivo conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell–matrix and cell–cell interactions, and drug resistance that reflect at least some of the tumor properties seen in vivo. Herein, we discussed the presently available Cancer stem cell three-dimensional culture models that use biomaterials and engineering tools and the biological implications of these models compared to the conventional ones.


Author(s):  
Jonas F. Eichinger ◽  
Maximilian J. Grill ◽  
Iman Davoodi Kermani ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractLiving soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.


Reproduction ◽  
1994 ◽  
Vol 101 (2) ◽  
pp. 327-332 ◽  
Author(s):  
U. Bentin-Ley ◽  
B. Pedersen ◽  
S. Lindenberg ◽  
J. F. Larsen ◽  
L. Hamberger ◽  
...  

Stem Cells ◽  
2006 ◽  
Vol 24 (2) ◽  
pp. 284-291 ◽  
Author(s):  
Nathaniel S. Hwang ◽  
Myoung Sook Kim ◽  
Somponnat Sampattavanich ◽  
Jin Hyen Baek ◽  
Zijun Zhang ◽  
...  

1993 ◽  
Vol 9 (6) ◽  
pp. 600-607 ◽  
Author(s):  
Patricia A. Parsons-Wingerter ◽  
W. Mark Saltzman

2017 ◽  
Vol 41 (12) ◽  
pp. 1316-1324 ◽  
Author(s):  
Ji Eun Park ◽  
Min Hee Park ◽  
Min Seong Kim ◽  
Yeo Reum Park ◽  
Jung Im Yun ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206811 ◽  
Author(s):  
Jing Li ◽  
Tong Chen ◽  
Xiahe Huang ◽  
Yunshan Zhao ◽  
Bin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document