Nested PCR and RFLP Analysis Based on the 16S rRNA Gene

Author(s):  
Bojan Duduk ◽  
Samanta Paltrinieri ◽  
Ing-Ming Lee ◽  
Assunta Bertaccini
2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2761-2765 ◽  
Author(s):  
Daniela Flôres ◽  
Ana Paula de Oliveira Amaral Mello ◽  
Thays Benites Camargo Pereira ◽  
Jorge Alberto Marques Rezende ◽  
Ivan Paulo Bedendo

Erigeron sp. plants showing symptoms of witches' broom and stunting were found near orchards of passion fruit in São Paulo state, Brazil. These symptoms were indicative of infection by phytoplasmas. Thus, the aim of this study was to detect and identify possible phytoplasmas associated with diseased plants. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR conducted with the primer pairs P1/Tint and R16F2n/16R2. Amplification of genomic fragments of 1.2 kb from the 16S rRNA gene confirmed the presence of phytoplasma in all symptomatic samples. The sequence identity scores between the 16S rRNA gene of the phytoplasma strain identified in the current study and those of previously reported ‘Candidatus Phytoplasma fraxini’-related strains ranged from 98 % to 99 % indicating the phytoplasma to be a strain affiliated with ‘Candidatus Phytoplasma fraxini’. The results from a phylogenetic analysis and virtual RFLP analysis of the 16S rRNA gene sequence with 17 restriction enzymes revealed that the phytoplasma strain belongs to the ash yellows phytoplasma group (16SrVII); the similarity coefficient of RFLP patterns further suggested that the phytoplasma represents a novel subgroup, designated 16SrVII-D. The representative of this new subgroup was named EboWB phytoplasma (Erigeron bonariensis Witches' Broom).


2006 ◽  
Vol 55 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Ali Al-Ahmad ◽  
Thorsten Mathias Auschill ◽  
Gabriele Braun ◽  
Elmar Hellwig ◽  
Nicole Birgit Arweiler

This study was carried out in order to compare two PCR-based methods in the detection of Streptococcus mutans. The first PCR method was based on primers for the 16S rRNA gene and the second method was based on specific primers that targeted the glucosyltransferase gene (gtfB). Each PCR was performed with eight different streptococci from the viridans group, five other streptococci and 17 different non-streptococcal bacterial strains. Direct use of the S. mutans 16S rRNA gene-specific primers revealed that Streptococcus gordonii and Streptococcus infantis were also detected. After amplifying the 16S rRNA gene with universal primers and subsequently performing nested PCR, the S. mutans-specific nested primers based on the 16S rRNA gene detected all tested streptococci. There was no cross-reaction of the gtfB primers after direct PCR. Our results indicate that direct PCR and nested PCR based on 16S rRNA genes can reveal false-positive results for oral streptococci and lead to an overestimation of the prevalence of S. mutans with regards to its role as the most prevalent causative agent of dental caries.


2009 ◽  
Vol 104 (7) ◽  
pp. 1003-1008 ◽  
Author(s):  
EMD Scheidegger ◽  
SAP Fracalanzza ◽  
LM Teixeira ◽  
P Cardarelli-Leite

2005 ◽  
Vol 71 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Anne-Ga�lle Le Bourhis ◽  
Katiana Saunier ◽  
Jo�l Dor� ◽  
Jean-Philippe Carlier ◽  
Jean-Fran�ois Chamba ◽  
...  

ABSTRACT A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1653-1653 ◽  
Author(s):  
M. Starović ◽  
S. Kojic ◽  
S. T. Kuzmanovic ◽  
S. D. Stojanovic ◽  
S. Pavlovic ◽  
...  

Blueberries (Vaccinium corymbosum) are among the healthiest fruits due to their high antioxidant content. The total growing area of blueberries in Serbia ranges from 80 to 90 ha. A phytoplasma-like disease was observed for the first time during July 2009 in three blueberry cultivars (Bluecrop, Duke, and Spartan) grown in central Serbia, locality Kopljare (44°20′10.9″ N, 20°38′39.3″ E). Symptoms of yellowing and reddening were observed on the upper leaves and proliferating shoots, similar to those already described on blueberries (4). There was uneven ripening of the fruits on affected plants. Incidence of affected plants within a single field was estimated to be greater than 20% in 2009 and 50% in 2010. Blueberry leaves, together with petioles, were collected during two seasons, 2009 and 2010, and six samples from diseased plants and one from symptomless plants from each cultivar, resulting in 42 samples in total. For phytoplasma detection, total DNA was extracted from the veins of symptomatic and asymptomatic leaves of V. corymbosum using the protocol of Angelini et al. (1). Universal oligonucleotide primers P1/P7 were used to amplify a 1.8-kb DNA fragment containing the 16S rRNA gene, the 16S-23S spacer region, and the 5′ end of the 23S rRNA gene. Subsequently, a 1.2-kb fragment of the 16S rRNA gene was amplified by nested PCR with the R16F2n/R16R2 primers. Reactions were performed in a volume of 50 μl using Dream Taq Green master mix (Thermo Scientific, Lithuania). PCR reaction conditions were as reported (3), except for R16F2n/R2 primers set (annealing for 30 s at 58°C). PCR products were obtained only from the DNA of symptomatic plants. Fragments of 1.2 kb were further characterized by the PCR-RFLP analysis, using AluI, HpaII, HhaI, and Tru1I restriction enzymes (Thermo Scientific, Lithuania), as recommended by the manufacturer. The products of restriction enzyme digestion were separated by electrophoresis on 2.5% agarose gel. All R16F2n/R2 amplicons showed identical RFLP patterns corresponding to the profile of the Stolbur phytoplasma (subgroup 16SrXII-A). The results were confirmed by sequencing the nested PCR product from the representative strain Br1. The sequence was deposited in NCBI GenBank database under accession number KC960486. Phylogenetic analysis showed maximal similarities with SH1 isolate from Vitis vinifera, Jordan (KC835139.1), Bushehr (Iran) eggplant big bud phytoplasma (JX483703.1), BA strain isolated from insect in Italy (JQ868436.1), and also with several plants from Serbia: Arnica montana L. (JX891383.1), corn (JQ730750.1), Hypericum perforatum (JQ033928.1), tobacco (JQ730740.1), etc. In conclusion, our results demonstrate that leaf discoloration of V. corymbosum was associated with a phytoplasma belonging to the 16SrXII-A subgroup. The wild European blueberry (Vaccinium myrtillus L.) is already detected as a host plant of 16SrIII-F phytoplasma in Germany, North America, and Lithuania (4). The main vector of the Stolbur phytoplasma, Hyalesthes obsoletus Signoret, was already detected in Serbia (2). The first report of Stolbur phytoplasma occurrence on blueberry in Serbia is significant for the management of the pathogen spreading in blueberry fields. Since the cultivation of blueberry has a great economic potential in the region, it is important to identify emerging disease concerns in order to ensure sustainable production. References: (1) E. Angelini et al. Vitis 40:79, 2001. (2) J. Jović et al. Phytopathology 99:1053, 2009. (3) S. Pavlovic et al. J. Med. Plants Res. 6:906, 2012. (4) D. Valiunas et al. J. Plant Pathol. 86:135, 2004.


2000 ◽  
Vol 38 (7) ◽  
pp. 2622-2627 ◽  
Author(s):  
J. B. Mahony ◽  
S. Chong ◽  
B. K. Coombes ◽  
M. Smieja ◽  
A. Petrich

Chlamydia pneumoniae has been associated with atherosclerosis and coronary artery disease (CAD), and its DNA has been detected in atheromatous lesions of the aorta, carotid, and coronary arteries by a variety of PCR assays. The objective of this study was to compare the performances of five published PCR assays in the detection of C. pneumoniae in peripheral blood mononuclear cells (PBMCs) from patients with coronary artery disease. The assays included two conventional PCRs, one targeting a cloned PstI fragment and one targeting the 16S rRNA gene; two nested PCRs, one targeting the 16S rRNA gene and one targeting ompA; and a touchdown enzyme time release (TETR) PCR, targeting the 16S rRNA gene. All PCRs had similar analytical sensitivities and detected a minimum of 0.005 inclusion-forming units (IFU) of C. pneumoniae; the ompA nested PCR and the TETR PCR were slightly more sensitive and detected 0.001 IFU. Assay reproducibility was examined by testing 10 replicates of C. pneumoniae DNA by each assay. All five assays showed excellent reproducibility at high levels of DNA, with scores of 10 out of 10 for 0.01 IFU, but exhibited decreased reproducibility for smaller numbers of C. pneumoniae IFU for all tests. Pairwise comparison of test results indicated that there was a significant difference between tests (Cochran Q = 32.0, P < 0.001), with thePstI fragment (P < 0.001) and 16S rRNA (P = 0.002) assays having lower reproducibility than the nested ompA and TETR assays. To further analyze assay sensitivity, C. pneumoniae-infected U-937 mononuclear cells were added to whole blood, and extracted mononuclear-cell DNA was tested by each assay. All five assays showed similar sensitivities, detecting 15 infected cells; three assays detected 3 infected cells, while all assays were negative at the next dilution (1.5 infected cells). A striking difference in performance of the five assays was seen, however, when PBMCs from CAD patients were tested for C. pneumoniae DNA. The ompA nested PCR detected C. pneumoniae DNA in 11 of 148 (7.4%) specimens, the 16S rRNA nested PCR detected 2 positives among the 148 specimens (1.4%) (P < 0.001), and the other 3 assays detected no positive specimens (P < 0.001, compared with theompA assay). These results indicate that analytical sensitivity alone does not predict the ability of an assay to detectC. pneumoniae in whole-blood-derived PBMCs. Before standardized assays can be used in wide-scale epidemiological studies, further characterization of these assays will be required to improve our understanding of their performance in the detection of C. pneumoniae in clinical material.


1998 ◽  
Vol 36 (4) ◽  
pp. 1090-1095 ◽  
Author(s):  
Robert F. Massung ◽  
Kim Slater ◽  
Jessica H. Owens ◽  
William L. Nicholson ◽  
Thomas N. Mather ◽  
...  

A sensitive and specific nested PCR assay was developed for the detection of granulocytic ehrlichiae. The assay amplifies the 16S rRNA gene and was used to examine acute-phase EDTA-blood and serum samples obtained from seven humans with clinical presentations compatible with human granulocytic ehrlichiosis. Five of the seven suspected cases were positive by the PCR assay using DNA extracted from whole blood as the template, compared with a serologic assay that identified only one positive sample. The PCR assay using DNA extracted from the corresponding serum samples as the template identified three positive samples. The sensitivity of the assay on human samples was examined, and the limit of detection was shown to be fewer than 2 copies of the 16S rRNA gene. The application of the assay to nonhuman samples demonstrated products amplified from template DNA extracted fromIxodes scapularis ticks collected in Rhode Island and from EDTA-blood specimens obtained from white-tailed deer in Maryland. All PCR products were sequenced and identified as specific to granulocytic ehrlichiae. A putative variant granulocytic ehrlichia 16S rRNA gene sequence was detected among products amplified from both the ticks and the deer blood specimens.


2007 ◽  
Vol 57 (9) ◽  
pp. 2037-2051 ◽  
Author(s):  
M. Martini ◽  
I.-M. Lee ◽  
K. D. Bottner ◽  
Y. Zhao ◽  
S. Botti ◽  
...  

Extensive phylogenetic analyses were performed based on sequences of the 16S rRNA gene and two ribosomal protein (rp) genes, rplV (rpl22) and rpsC (rps3), from 46 phytoplasma strains representing 12 phytoplasma 16Sr groups, 16 other mollicutes and 28 Gram-positive walled bacteria. The phylogenetic tree inferred from rp genes had a similar overall topology to that inferred from the 16S rRNA gene. However, the rp gene-based tree gave a more defined phylogenetic interrelationship among mollicutes and Gram-positive walled bacteria. Both phylogenies indicated that mollicutes formed a monophyletic group. Phytoplasmas clustered with Acholeplasma species and formed one clade paraphyletic with a clade consisting of the remaining mollicutes. The closest relatives of mollicutes were low-G+C-content Gram-positive bacteria. Comparative phylogenetic analyses using the 16S rRNA gene and rp genes were performed to evaluate their efficacy in resolving distinct phytoplasma strains. A phylogenetic tree was constructed based on analysis of rp gene sequences from 87 phytoplasma strains belonging to 12 16Sr phytoplasma groups. The phylogenetic relationships among phytoplasmas were generally in agreement with those obtained on the basis of the 16S rRNA gene in the present and previous works. However, the rp gene-based phylogeny allowed for finer resolution of distinct lineages within the phytoplasma 16Sr groups. RFLP analysis of rp gene sequences permitted finer differentiation of phytoplasma strains in a given 16Sr group. In this study, we also designed several semi-universal and 16Sr group-specific rp gene-based primers that allow for the amplification of 11 16Sr group phytoplasmas.


2002 ◽  
Vol 68 (8) ◽  
pp. 4025-4034 ◽  
Author(s):  
D. S. Andrade ◽  
P. J. Murphy ◽  
K. E. Giller

ABSTRACT PCR-mediated restriction fragment length polymorphism (RFLP) analysis of the 16S-23S rRNA internally transcribed spacer (ITS) region and the 16S rRNA gene indicated that the rhizobial populations isolated from common bean (Phaseolus vulgaris L.) nodules in the unlimed soil from a series of five lime rates applied 6 years previously to plots of an acidic oxisol had less diversity than those from plots with higher rates of liming. Isolates affiliated with Rhizobium tropici IIB and Rhizobium leguminosarum bv. phaseoli were predominant independent of lime application. An index of richness based on the number of ITS groups increased from 2.2 to 5.7 along the soil liming gradient, and the richness index based on “species” types determined by RFLP analysis of the 16S rRNA gene varied from 0.5 to 1.4. The Shannon index of diversity, based on the number of ITS groups, increased from 1.8 in unlimed soil to 2.8 in limed soil, and, based on RFLP analysis of the 16S rRNA gene, ranged from 0.9 to 1.4. In the limed soil, the subpopulation of R. tropici IIB pattern types contained the largest number of ITS groups. In contrast, there were more R. leguminosarum bv. phaseoli types in the unlimed soil with the lowest pH than in soils with the highest pH. The number of ITS (“strain”) groups within R. leguminosarum bv. phaseoli did not change with increased abundance of rhizobia in the soil, while with R. tropici IIB, the number of strain groups increased significantly. Some cultural and biochemical characteristics of Phaseolus-nodulating isolates were significantly related to changes in soil properties caused by liming, largely due to changes in the predominance of the rhizobial species groups.


2012 ◽  
Vol 78 (17) ◽  
pp. 6172-6179 ◽  
Author(s):  
R. Danielsson ◽  
A. Schnürer ◽  
V. Arthurson ◽  
J. Bertilsson

ABSTRACTMethanogenic community structure, methane production (CH4), and volatile fatty acid (VFA) profiles were investigated in Swedish dairy cows fed a diet with a forage/concentrate ratio of 500/500 or 900/100 g/kg of dry matter (DM) of total DM intake (DMI). The rumen methanogenic population was evaluated using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR (qRT-PCR). Mean CH4yields did not differ (P> 0.05) between diets, being 16.9 and 20.2 g/kg DMI for the 500/500 and 900/100 diets, respectively. The T-RFLP analysis revealed that populations differed between individual cows and that each individual population responded differently to the diets. The 16S rRNA gene libraries revealed thatMethanobrevibacterspp. dominated for both diets. CH4production was positively correlated with a dominance of sequences representing T-RFs related toMethanobrevibacter thaueri,Methanobrevibacter millerae, andMethanobrevibacter smithiirelative toMethanobrevibacter ruminantiumandMethanobrevibacter olleyae. Total numbers of methanogens and total numbers ofMethanobacterialeswere significantly higher with the 500/500 diet (P< 0.0004 andP< 0.002, respectively). However, no relationship was found between CH4production and total number of methanogens. No differences were seen in total VFA, propionic acid, or acetic acid contents, but the molar proportion of butyric acid in the rumen was higher for the 500/500 diet than for the 900/100 diet (P< 0.05). Interestingly, the results also revealed that a division of the identified methanogenic species into two groups, suggested in the work of King et al. (E. E. King, R. P. Smith, B. St-Pierre, and A. D. G. Wright, Appl. Environ. Microbiol.77:5682–5687, 2011), increased the understanding of the variation in CH4production between different cows.


Sign in / Sign up

Export Citation Format

Share Document