phytoplasma strain
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ghobad Babaei ◽  
Seyyed Alireza Esmaeilzadeh‐Hosseini ◽  
Hamzeh Ali Shirmardi ◽  
Assunta Bertaccini

Plant Disease ◽  
2021 ◽  
Author(s):  
Shao-shuai Yu ◽  
Yuan Wu ◽  
Wei wei Song

Melochia corchorifolia L. is a plant belonging to the family Sterculiaceae, extracts from this plant have been reported to inhibit melanogenesis (Yuan et al., 2020). During September to November 2020, the plants showing abnormal symptoms including witches’-broom, leaf chlorosis, leaflet and internode shortening (Fig.1), were found in Dingan county of Hainan province, China, with about 50% infection rates in the field. The disease symptoms were suspected to be caused by the phytoplasma, a plant pathogenic prokaryotes that could not be cultured in vitro. Aiming to confirm the pathogen causing the symptoms, total DNA of the symptomatic or asymptomatic Melochia corchorifolia samples were extracted by CTAB method (Doyle and Doyle, 1990) using 0.10 g fresh plant leaves using the rapid extraction kit for plant genomic DNA (CTAB Plant Genome DNA Rapid Extraction Kit, Aidlab Biotechnologies Co., Ltd, Beijing, China). PCR reactions were performed using primers R16mF2/R16mR1 (Gundersen and Lee, 1996) specific for phytoplasma 16S rRNA gene fragments. PCR products of phytoplasma 16S rRNA gene sequences were obtained from the ten symptomatic plant samples but not from the DNA of the asymptomatic plant samples. The PCR products were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Shanghai, China) and the data were deposited in GenBank. The sequences of 16S rRNA gene fragments amplified from the DNA extracted from the disease plant samples were all identical, with a length of 1336 bp for the 16S rRNA (GenBank accession: MZ353520). Nucleotide Blast search based on the 16S rRNA gene fragment of the phytoplasma strain showed 100% sequence identities with that of 16SrII peanut witches’-broom group members, such as Cassava witches’-broom phytoplasma (KM280679), Cleome sp. phytoplasma (KM280677), Tephrosia purpurea witches’-broom phytoplasma (MW616560), Desmodium triflorum little leaf phytoplasma (MT452308) and Peanut witches’-broom phytoplasma (JX403944). Analysis of the 16S rRNA gene sequence of McWB-hnda strain by interactive online phytoplasma classification tool iPhyClassifier (Zhao et al., 2009) indicated that the phytoplasma strain is a member of 16SrII-V subgroup. The phytoplasma strain was named as Melochia corchorifolia witches’-broom (McWB) phytoplasma, McWB-hnda strain. Phylogenetic analysis performed by MEGA 7.0 employing neighbor-joining (NJ) method with 1000 bootstrap value (Kumar et al., 2016) indicated that the McWB-hnda phytoplasma strain was clustered into one clade with the phytoplasma strains of Tephrosia purpurea witches’-broom, Cleome sp., Peanut witches’-broom, Cassava witches’-broom and Desmodium triflorum little leaf with 97 % bootstrap value (Fig.2); McWB-hnda phytoplasma strain identified in the study and Melochia corchorifolia phyllody phytoplasma strain (KX150461) belonging to 16SrI-B subgroup previously identified in the Hainan Island of China by Chen et al. (2017) are in two independent clades(Fig.2). To our knowledge, this is the first report of a 16SrII-V subgroup phytoplasma associated with Melochia corchorifolia witches’-broom disease in Hainan Province, a tropical island of China. The phytoplasma strain identified in the study was relatively close to 16SrII peanut witches’-broom group phytoplasma strains associated with witches’-broom or little leaf diseases in the plants like Peanut, Tephrosia purpurea, Cassava and Desmodium triflorum. Our finding in the study indicated that Melochia corchorifolia may act as an alternative natural host not only for 16SrI-B subgroup phytoplasma but also for 16SrII-V subgroup phytoplasma, which would contribute to the spreading of the related phytoplasma diseases.


2021 ◽  
Author(s):  
Yan Zhao ◽  
Wei Wei

Abstract The reference strain of 'Ca. Phytoplasma trifolii' is the causative agent of clover proliferation (CP) disease of alsike clover (Trifolium hybridum). The CP disease was first reported in Canada in the early 1960s when the aetiological agent was mistakenly presumed to be a yellows-type virus (Chiykowski, 1965). Subsequent investigations revealed that the disease was associated with infection by a mycoplasma-like organism (Chen and Hiruki, 1975>; Hiruki and Chen, 1984), now termed phytoplasma, strain CPR (Hiruki and Wang, 2004). Later, phytoplasmas of the same lineage (subgroup 16SrVI-A) were found in the USA, Mexico, and many countries in Europe and Asia, causing diseases in diverse leguminous and vegetable crops, responsible for significant yield losses and quality reductions. Phytoplasmas of the same lineage also caused disease in elm trees in the USA. Phytoplasmas of closely-related lineages (various subgroups of group 16SrVI) also have wide distributions around the world.


2021 ◽  
Author(s):  
Yan Zhao ◽  
Wei Wei

Abstract The reference strain of 'Ca. Phytoplasma trifolii' is the causative agent of clover proliferation (CP) disease of alsike clover (Trifolium hybridum). The CP disease was first reported in Canada in the early 1960s when the aetiological agent was mistakenly presumed to be a yellows-type virus (Chiykowski, 1965). Subsequent investigations revealed that the disease was associated with infection by a mycoplasma-like organism (Chen and Hiruki, 1975; Hiruki and Chen, 1984), now termed phytoplasma, strain CPR (Hiruki and Wang, 2004). Later, phytoplasmas of the same lineage (subgroup 16SrVI-A) were found in the USA, Mexico, and many countries in Europe and Asia, causing diseases in diverse leguminous and vegetable crops, responsible for significant yield losses and quality reductions. Phytoplasmas of the same lineage also caused disease in elm trees in the USA. Phytoplasmas of closely-related lineages (various subgroups of group 16SrVI) also have wide distributions around the world.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shao-shuai Yu ◽  
Rui-ling Zhao ◽  
Ming-xing Lin ◽  
Yuan Wu ◽  
Chen Shu-gui ◽  
...  

Waltheria indica L. is a kind of medicinal plants belonging to the family of Sterculiaceae distributed in China, which extracts with many active compounds used for treatment of rheumatism and sore pains (Hua et al., 2019). During September to November 2020, the plants showing abnormal symptoms including floral virescence, leaf chlorosis and leaflet, as shown in Fig.1, were found in Dingan county of Hainan province, China, with about 70% incidence. The disease symptoms which were suspected to be infected by the phytoplasma, a phloem-limited cell-wall-less prokaryotic pathogen could not be cultured in vitro, severely impacted Waltheria indica growth resulting in financial loss and ecological damage in the location. For identification of the causal pathogen, the total DNA of symptom or symptomless Waltheria indica samples were extracted using 0.10 g fresh plant tissues using CTAB method. PCR reactions were performed using primers R16mF2/R16mR1 (Lee et al., 1993) and AYgroelF/AYgroelR (Mitrović et al., 2011) specific for phytoplasma 16S rRNA and groEL gene fragments. The target productions of the two gene fragments of phytoplasma were detected in the DNA from four symptomatic plant samples whereas not in the DNA from the symptomless plant samples. The PCR productions were sequenced and the data were deposited in GenBank. The two gene fragments of the DNA extracted from the symptom plant samples were all identical, with the length of 1340 bp 16S rRNA (GenBank accession: MW353909) and 1312 bp groEL (MW353709) gene sequence fragments, putatively encoding 437 (groEL) amino acids sequence. The phytoplasma strain was named as Waltheria indica virescence (WiV) phytoplasma, WiV-hnda strain. A Blast search based on the 16S rRNA gene fragment of WiV-hnda phytoplasma strain revealed the highest level of sequence identities (99.85%) with that of 16SrI aster yellows group members (16SrI-B subgroup), such as Onion yellows phytoplasma strain OY-M (AP006628) from Japan (Oshima et al., 2004); Periwinkle virescence phytoplasma strain PeV-hnhk (KP662136), Chinaberry witches’-broom phytoplasma strain CWB-hnsy1 (KP662119) and CWB-hnsy2 (KP662120), all the strains from Hainan island of China (Yu et al., 2017). A Blast search based on the groEL gene sequence fragment of WiV-hnda indicated 99.92% sequence identity with that of 16SrI aster yellows group members (16SrI-B subgroup) such as Onion yellows phytoplasma strain OY-M (AP006628). Homology and phylogenetic analysis by DNAMAN 5.0 and MEGA 7.0 software indicated that the phytoplasma strains of WiV-hnda, OY-M, PeV-hnhk, CWB-hnsy1 and CWB-hnsy2 were clustered into one clade based on the 16S rRNA gene fragments. WiV-hnda, OY-M and Aster yellow witches’-broom (AYWB) (CP000061) phytoplasma strains were clustered into one clade based on the groEL gene fragments. To our knowledge, this was the first time that Waltheria indica virescence disease induced by 16SrI-B subgroup phytoplasma strain was reported in China. Genetic analysis showed that WiV-hnda was closely related to the phytoplasma strains causing Onion yellows in Japan, Periwinkle virescence and Chinaberry witches’-broom disease in China.


Author(s):  
Kiran Kirdat ◽  
Bhavesh Tiwarekar ◽  
Vipool Thorat ◽  
Shivaji Sathe ◽  
Yogesh Shouche ◽  
...  

Sugarcane Grassy Shoot (SCGS) disease is known to be related to Rice Yellow Dwarf (RYD) phytoplasmas (16SrXI-B group) which are found predominantly in sugarcane growing areas of the Indian subcontinent and South-East Asia. The 16S rRNA gene sequences of SCGS phytoplasma strains belonging to the 16SrXI-B group share 98.07 % similarity with ‘Ca. Phytoplasma cynodontis’ strain BGWL-C1 followed by 97.65 % similarity with ‘Ca. P. oryzae’ strain RYD-J. Being placed distinctly away from both the phylogenetically related species, the taxonomic identity of SCGS phytoplasma is unclear and confusing. We attempted to resolve the phylogenetic positions of SCGS phytoplasma based on the phylogenetic analysis of 16S rRNA gene (>1500 bp), nine housekeeping genes (>3500 aa), core genome phylogeny (>10 000 aa) and OGRI values. The draft genome sequences of SCGS phytoplasma (strain SCGS) and Bermuda Grass White leaf (BGWL) phytoplasma (strain LW01), closely related to ‘Ca. P. cynodontis’, were obtained. The SCGS genome was comprised of 29 scaffolds corresponding to 505 173 bp while LW01 assembly contained 21 scaffolds corresponding to 483 935 bp with the fold coverages over 330× and completeness over 90 % for both the genomes. The G+C content of SCGS was 19.86 % while that of LW01 was 20.46 %. The orthoANI values for the strain SCGS against strains LW01 was 79.42 %, and dDDH values were 22. Overall analysis reveals that SCGS phytoplasma forms a distant clade in RYD group of phytoplasmas. Based on phylogenetic analyses and OGRI values obtained from the genome sequences, a novel taxon ‘Candidatus Phytoplasma sacchari’ is proposed.


Plant Disease ◽  
2020 ◽  
Author(s):  
Shao-shuai Yu ◽  
Qinghua Tang ◽  
Yuan Wu ◽  
Ming-xing Lin ◽  
Rui-ling Zhao ◽  
...  

Trema tomentosa (Roxb.) Hara belonging to Ulmaceae displayed abnormal symptoms including witches’-broom, internode shortening, leaf chlorosis and leaflet that affected seriously their growth causing financial loss and ecological damage in China. During August through September 2020, these plants with the symptoms were first found and collected in Dingan and Qinghai counties of Hainan province, China. PCR were performed using the primers R16mF2/R16mR1 and secAfor1/secArev3 specific for phytoplasma 16S rRNA and secA gene fragments. The two gene fragments of the DNA extracted from the four disease samples were identical, with length of 1303 bp 16S rRNA and 587 bp secA gene fragments. The phytoplasma strain was named as Trema tomentosa witches’-broom (TtWB) phytoplasma, TtWB-hn strain. Phylogenetic and computer-simulated RFLP analyses based on the nearly full-length 16S rRNA gene sequence indicated that the TtWB phytoplasma strain is more closely related to the 16SrXXXII-A subgroup than to the other subgroups within 16SrXXXII group. It may represent a new subgroup, designed as 16SrXXXII-D subgroup, which is distinct from the other phytoplasma subgroups within the 16SrXXXII group. To our knowledge, this is the first report showing the occurrence of the phytoplasma strain belongs to 16SrXXXII-D subgroup associated with witches’-broom disease in Trema tomentosa in China. Genetic analysis indicated that the TtWB strain was closely related to the phytoplasma strains infecting periwinkle, oil palm, coconut palm in Malyasian, Camptotheca acuminate in Yunnan province of China and Elaeocarpus zollingeri in Japan.


Plant Disease ◽  
2020 ◽  
Author(s):  
Shao-shuai Yu ◽  
Qinghua Tang ◽  
Yuan Wu ◽  
Rui-ling Zhao ◽  
Wei wei Song ◽  
...  

Pericampylus glaucus is an important medicinal plant resource containing active components with potential antitumor activity in China (Zhao & Cui, 2009). During July through August 2020, plants displayed disease symptoms including “witches’ broom”, leaf chlorosis, leaflet and internode shortening that impacted their growth (Fig. 1). These plants were first found in Dingan county of Hainan province, China. Total DNA from 12 plants were extracted using 0.10 g fresh plant leaves based on CTAB method. After amplification using primers specific for phytoplasma 16S rRNA, tuf and secA gene targets, R16mF2R16mR1 (Lee et al, 1993), fTuf1/rTuf1 (Schneider et al., 1997) and secAfor1/secArev3 (Hodgetts et al., 2008), the target bands of the three gene fragments of phytoplasma were detected in the disease sample DNA from six disease plants, and not in the healthy sample DNA from six healthy plants. Nucleotide sequences of the three genes were obtained from the PCR products sequencing and analyzed by DNAMAN 5.0 software. The three gene fragments of the DNA extracted from the disease samples were identical, with length of 1334 bp 16S rRNA (GenBank accession: MT872515), 989 bp tuf (MT755960) and 750 bp secA (MT755961) gene fragments, putatively encoding 329 (tuf) and 249 (secA) amino acids sequence separately. The phytoplasma strain was named as Pericampylus glaucus witches’-broom (PgWB) phytoplasma, PgWB-hnda strain, belonging to 16SrI-B subgroup by iPhyClassifier analysis. Homology and phylogenetic analysis indicated that based on 16S rRNA gene fragments, PgWB-hnda, pepper yellow crinkle phytoplasma PYC-hnhk (MT760793), chinaberry witches’-broom phytoplasma CWB-hnsy1 (KP662119) and CWB-hn (EF990733), periwinkle virescence phytoplasma PeV-hnhk (KP662136), with 100.0 % identity value, arecanut yellow leaf phytoplasma AYL-hnwn (FJ998269) and AYL-hn (FJ694685), with 99.8 % identity value, were clustered into one clade. Based on the analysis of tuf gene sequence fragments, PgWB was closely related to PYC-hnhk (MT755960), CWB-hnsy1 (KP662155), PeV-hnhk (KP662172) with 99.9 % identity value. Based on the analysis of secA gene sequence fragments, PgWB was closely related to CWB-hnsy1 (KP662173) with 99.7 % identity value, PYC-hnhk (MT755961), PeV-hnhk (KP662190) with 99.4 % identity value. To our knowledge, this is the first time that Pericampylus glaucus witches’-broom disease caused by 16SrI-B subgroup phytoplasma strain was found in China. Multilocus sequence analysis showed that PgWB was closely related to the phytoplasma strains causing pepper yellow crinkle, chinaberry witches’-broom, periwinkle virescence and areca palm yellow leaf diseases, all occurred in Hainan Island of China.


2020 ◽  
Vol 33 (5) ◽  
pp. 715-717 ◽  
Author(s):  
Kiran Kirdat ◽  
Bhavesh Tiwarekar ◽  
Vipool Thorat ◽  
Nitin Narawade ◽  
Dhiraj Dhotre ◽  
...  

We performed whole-genome sequencing of two phytoplasmas associated with sugarcane grassy shoot (SCGS) and Bermuda grass white leaf diseases. These are the first draft genomes of SCGS phytoplasma (strain SCGS) and ‘Candidatus Phytoplasma cynodontis’ (strain LW01) and may help to delineate these phytoplasmas at a finer taxonomic level.


Sign in / Sign up

Export Citation Format

Share Document