scholarly journals First Report of Blueberry Reddening Disease in Serbia Associated with 16SrXII-A (Stolbur) Phytoplasma

Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1653-1653 ◽  
Author(s):  
M. Starović ◽  
S. Kojic ◽  
S. T. Kuzmanovic ◽  
S. D. Stojanovic ◽  
S. Pavlovic ◽  
...  

Blueberries (Vaccinium corymbosum) are among the healthiest fruits due to their high antioxidant content. The total growing area of blueberries in Serbia ranges from 80 to 90 ha. A phytoplasma-like disease was observed for the first time during July 2009 in three blueberry cultivars (Bluecrop, Duke, and Spartan) grown in central Serbia, locality Kopljare (44°20′10.9″ N, 20°38′39.3″ E). Symptoms of yellowing and reddening were observed on the upper leaves and proliferating shoots, similar to those already described on blueberries (4). There was uneven ripening of the fruits on affected plants. Incidence of affected plants within a single field was estimated to be greater than 20% in 2009 and 50% in 2010. Blueberry leaves, together with petioles, were collected during two seasons, 2009 and 2010, and six samples from diseased plants and one from symptomless plants from each cultivar, resulting in 42 samples in total. For phytoplasma detection, total DNA was extracted from the veins of symptomatic and asymptomatic leaves of V. corymbosum using the protocol of Angelini et al. (1). Universal oligonucleotide primers P1/P7 were used to amplify a 1.8-kb DNA fragment containing the 16S rRNA gene, the 16S-23S spacer region, and the 5′ end of the 23S rRNA gene. Subsequently, a 1.2-kb fragment of the 16S rRNA gene was amplified by nested PCR with the R16F2n/R16R2 primers. Reactions were performed in a volume of 50 μl using Dream Taq Green master mix (Thermo Scientific, Lithuania). PCR reaction conditions were as reported (3), except for R16F2n/R2 primers set (annealing for 30 s at 58°C). PCR products were obtained only from the DNA of symptomatic plants. Fragments of 1.2 kb were further characterized by the PCR-RFLP analysis, using AluI, HpaII, HhaI, and Tru1I restriction enzymes (Thermo Scientific, Lithuania), as recommended by the manufacturer. The products of restriction enzyme digestion were separated by electrophoresis on 2.5% agarose gel. All R16F2n/R2 amplicons showed identical RFLP patterns corresponding to the profile of the Stolbur phytoplasma (subgroup 16SrXII-A). The results were confirmed by sequencing the nested PCR product from the representative strain Br1. The sequence was deposited in NCBI GenBank database under accession number KC960486. Phylogenetic analysis showed maximal similarities with SH1 isolate from Vitis vinifera, Jordan (KC835139.1), Bushehr (Iran) eggplant big bud phytoplasma (JX483703.1), BA strain isolated from insect in Italy (JQ868436.1), and also with several plants from Serbia: Arnica montana L. (JX891383.1), corn (JQ730750.1), Hypericum perforatum (JQ033928.1), tobacco (JQ730740.1), etc. In conclusion, our results demonstrate that leaf discoloration of V. corymbosum was associated with a phytoplasma belonging to the 16SrXII-A subgroup. The wild European blueberry (Vaccinium myrtillus L.) is already detected as a host plant of 16SrIII-F phytoplasma in Germany, North America, and Lithuania (4). The main vector of the Stolbur phytoplasma, Hyalesthes obsoletus Signoret, was already detected in Serbia (2). The first report of Stolbur phytoplasma occurrence on blueberry in Serbia is significant for the management of the pathogen spreading in blueberry fields. Since the cultivation of blueberry has a great economic potential in the region, it is important to identify emerging disease concerns in order to ensure sustainable production. References: (1) E. Angelini et al. Vitis 40:79, 2001. (2) J. Jović et al. Phytopathology 99:1053, 2009. (3) S. Pavlovic et al. J. Med. Plants Res. 6:906, 2012. (4) D. Valiunas et al. J. Plant Pathol. 86:135, 2004.

Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 969-969 ◽  
Author(s):  
L. W. Liefting ◽  
S. Veerakone ◽  
L. I. Ward ◽  
G. R. G. Clover

In January of 2009, potato plants (Solanum tuberosum) from a commercial crop in the Waikato Region, New Zealand were observed to have symptoms of upward rolling and purpling of the leaves. The symptoms appeared similar to those of “zebra chip”, a disorder of potato recently found to be associated with ‘Candidatus Liberibacter solanacearum’ in New Zealand and the United States (4). Total DNA from the leaf midveins and tubers from one of the symptomatic plants was separately extracted with an InviMag Plant DNA Mini Kit (Invitek GmbH, Berlin, Germany) and a KingFisher mL workstation (Thermo Scientific, Waltham, MA). DNA extracted from leaf midveins and tubers tested negative for ‘Ca. L. solanacearum’ by nested-PCR using primer pair OA2/OI2c (4) followed by Lib16S01F/Lib16S01R (5′-TTCTACGGGATAACGCACGG-3′ and 5′-CGTCAGTATCAGGCCAGTGAG-3′), which amplifies a 580-bp region of the 16S rRNA gene. However, DNA extracted from the tuber tissue tested positive for phytoplasma by TaqMan real-time PCR (3). No phytoplasma was detected in the DNA extracted from leaf tissue. The 16S rRNA gene, 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene of the phytoplasma were amplified with primers P1/P7 (1). The PCR product was cloned into the pCR 4-TOPO vector (Invitrogen, Carlsbad, CA) and sequenced (GenBank Accession No. FJ943262). BLAST analysis showed 100% identity to ‘Ca. Phytoplasma australiense’ (16SrXII, Stolbur group). A fragment of approximately 850-bp of the Tuf gene was also amplified (2) and sequenced directly (GenBank Accession No. FJ943263). BLAST analysis showed 100% identity to Tuf gene variant IX of ‘Ca. P. australiense’ (2). An additional 14 plants showing similar leaf symptoms and also production of aerial tubers were collected from seven different potato fields from the Auckland and Waikato regions. Total DNA from the leaf midveins, stem, and tubers were separately extracted from each of the plants. The samples were tested for phytoplasma by nested-PCR using primer pair R16F2/R16R2, followed by NGF/NGR (1), and tested for ‘Ca. L. solanacearum’ by nested-PCR as described above. Seven plants tested positive only for phytoplasma, three tested positive for only ‘Ca. L. solanacearum’, and four plants tested positive for both pathogens. The pathogens were most commonly detected in samples extracted from the stem with 9 and 5 of the 14 samples testing positive for phytoplasma and liberibacter, respectively. Six of each of the leaf and tuber samples tested positive for phytoplasma. Liberibacter was detected in one of the leaf samples and in four of the tuber samples. ‘Ca. P. australiense’ has only been reported from New Zealand and Australia. The only other known hosts of ‘Ca. P. australiense’ in New Zealand are strawberry and native plants belonging to the genera Cordyline, Coprosma, and Phormium (2). In Australia, ‘Ca. P. australiense’ is associated with Australian grapevine yellows and Papaya dieback (2). To our knowledge, this is the first report of ‘Ca. P. australiense’ infecting potato as well as the first report of phytoplasma and ‘Ca. L. solanacearum’ mixed infections in potato. References: (1) M. T. Andersen et al. Plant Pathol. 47:188, 1998. (2) M. T. Andersen et al. Phytopathology 96:838, 2006. (3) N. M. Christensen et al. Mol. Plant Microbe Interact. 17:1175, 2004. (4) L. W. Liefting et al. Plant Dis. 93:208, 2009.


Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 666-666 ◽  
Author(s):  
V. Duarte ◽  
E. G. Silva ◽  
I. C. R. Hass ◽  
I. P. Bedendo ◽  
E. W. Kitajima

China tree (Melia azedarach L.), originally from Asia, is an exotic deciduous species in Brazil and is used as an ornamental shade tree in the southern region of the country. Since 2005, plants displaying yellowing, little leaves, witches' broom, and decline have been observed in the State of Rio Grande do Sul. In the streets and avenues of the capital city of Porto Alegre, there are approximately 173 tree species and China tree (6.57% of all trees) is among the top 10 (80,000 China trees and most are symptomatic). Plants with those symptoms are very distinctive and have been found also in the cities of Livramento, Rio Grande, Santa Maria, and Vacaria, places located in seashore areas, and along highways everywhere in the state. The high incidence seems to be related to drought during the last few years. These symptoms are typical of a disease identified by yellowing or decline of China tree associated with phytoplasma and previously reported in the neighboring countries of Argentina, Paraguay, and Bolivia (2). To demonstrate the presence of phytoplasma in diseased trees and to confirm its identity, total DNA was extracted from China tree leaf midribs collected from 10 symptomatic and three asymptomatic plants. Nested PCR was performed with the P1/P7 primer pair in the primary PCR to amplify a 1.8-kb fragment encompassing the 16S rRNA gene, the 16S-23S spacer region, and the 5′ end of the 23S rRNA gene, while the secondary PCR was primed by the R16F2n/R16R2 primer pair to amplify a 1.2-kb fragment of the 16S rRNA gene from the 1.8-kb fragment (3,4). DNA fragments of 1.2 kb amplified from nested PCR were analyzed by restriction fragment length polymorphism with restriction enzymes AluI, HhaI, HpaII, KpnI, MboI, MseI, and RsaI, revealing identical profiles for each amplicon and demonstrating that a phytoplasma belonging to group 16SrIII, subgroup B (16SrIII-B) (1) was associated consistently with all symptomatic plants. BLAST analysis revealed 99% identity among these cloned 1.2-kb sequences and representative sequences of phytoplasmas affiliated with group 16SrIII (GenBank Accession Nos. AY081817 and AF147706). A majority consensus sequence representing the phytoplasma found in China trees was selected and deposited in GenBank (Accession No. FJ404775). These results were confirmed by observation with transmission electron microscopy of pleomorphic bodies 400 to 2,000 nm in diameter in the phloem sieve tubes of all symptomatic trees. No phytoplasma was detected or visualized in asymptomatic samples. These results corroborate those from studies conducted in neighboring countries that demonstrated the association between phytoplasmas of group 16SrIII and decline of China trees (1). In conclusion, the current study revealed that a phytoplasma affiliated with group 16SrIII-B is associated with the decline of China tree in Brazil, a disease previously described based solely on symptoms (2). The incidence and severity of the disease are enough to prevent further use of these trees as landscape plants in southern Brazil. References: (1) J. D. Arneodo et al. J. Phytopathol. 155:70, 2007. (2) M. Dalbosco et al. Fitopatol. Bras. 30(Suppl.):177, 2005. (3) S. Deng and C. Hiruki. J. Microbiol. Methods 14:53, 1991. (4) C. D. Smart et al. Appl. Environ. Microbiol. 62:2988, 1996.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 418-418 ◽  
Author(s):  
M. Kovačević ◽  
Z. Đurić ◽  
J. Jović ◽  
G. Perković ◽  
B. Lolić ◽  
...  

Maize redness (MR), caused by stolbur phytoplasma (16SrXII-A, ‘Candidatus phytoplasma solani’) and vectored by the cixiid planthopper Reptalus panzeri (Löw), is a severe and emerging disease of maize in southeastern Europe (2). Symptoms of MR include midrib, leaf, and stalk reddening, followed by desiccation of the entire plant, abnormal ear development, and incomplete kernel set. MR may cause significant economic losses (2). During 2010, 2011, and 2012, the presence of MR-like symptoms on maize accompanied by significant yield losses were frequently observed in maize fields in the Semberija region of northeastern Bosnia and Herzegovina. From mid-June to early July, potential vectors were collected using mouth-aspirators from maize plants in fields at three locations in the Semberija region where MR-like symptoms were previously observed. At the end of July, symptomatic maize plants were collected from six fields in the same region for phytoplasma identification. In addition, we sampled asymptomatic johnsongrass (Sorghum halepense L.), bindweed (Convolvulus arvensis L.), and volunteer wheat (Triticum aestivum L.) in areas adjacent to maize fields with MR-like symptoms, as potential phytoplasma reservoirs (2,3). A total of 49 plants (38 maize, 6 johnsongrass, 3 bindweed, and 2 wheat) and 43 R. panzeri were tested for the presence of stolbur phytoplasma. Leaves of four maize seedlings, grown in insect-proof greenhouse conditions, were used as controls. Total DNA was extracted from roots of each plant and R. panzeri using the CTAB methods (2). Initial phytoplasma detection was conducted on 16S rRNA gene using nested PCR assay with phytoplasma universal primers P1/P7 and F2n/R2 (4). Subsequently, all phytoplasma positive samples were retested employing stolbur-specific Stol11 protocol with the f2r/f3r2 primer set (1). Molecular characterization of identified phytoplasmas was performed by PCR-RFLP analysis of the tuf gene (3) and by sequence analyses of the 16S rRNA nested PCR products (GenBank Accession No. KC852868). All samples that tested positive on 16S rRNA gene using phytoplasma generic primers gave positive reaction in assays with stolbur-specific primers. Stolbur phytoplasma was identified in 36 of 49 plant samples (34 of 38 symptomatic maize plants and in 2 of 6 johnsongrass) and in 2 of 43 R. panzeri individuals. None of the control plants, bindweed, or wheat samples were positive for the presence of any phytoplasma. Tuf gene RFLP analyses enabled affiliation of all isolates to the stolbur type tuf-b. Comparison of the 16S rRNA sequence using BLAST analyses further confirmed identification of the phytoplasmas as being ‘Candidatus phytoplasma solani.’ The obtained sequence showed 100% identity with ‘Candidatus phytoplasma solani’ from corn in Serbia (JQ730750). These data clearly demonstrated association of stolbur phytoplasma with MR symptoms on maize in Semberija, which represents the first report of the MR disease and stolbur phytoplasma in maize, R. panzeri, and johnsongrass in Bosnia and Herzegovina. In the Semberija region, maize-wheat crop rotation is a traditional practice, which is a key factor for MR occurrence and persistence (2). References: (1) D. Clair et al. Vitis 42:151, 2003. (2) J. Jović et al. Phytopathology 99:1053, 2009. (3) M. Langer and M. Maixner. Vitis 43, 191, 2004. (4) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 420-420 ◽  
Author(s):  
D. Josic ◽  
M. Starovic ◽  
S. Stojanovic ◽  
T. Popovic ◽  
N. Dolovac ◽  
...  

Saponaria officinalis L. (Caryophyllaceae; also known as bouncingbet or soapwort) is a perennial medicinal plant important for the pharmaceutical industry and used as an expectorant, alterative, laxative, and ointment for some skin diseases and arthritic conditions. S. officinalis plants with typical symptoms (23% in 2011 and 47% in 2012) of phytoplasma infection were observed in Pancevo plantation, Serbia. The symptoms appeared in May with leaves changing color from green to brown with severe reddening and necrosis. Severely diseased plants died. The infected plants had a significant reduction in biomass and quality. To investigate the presence of phytoplasma, total DNA was extracted from 10 symptomatic and four asymptomatic plants by a CTAB method. The nested PCR was carried out using phytoplasma-specific primer set P1/16S-SR followed by R16F2n/R16R2, targeting the 16S rRNA gene sequence of 1.5 and 1.2 kb in length, respectively. The amplicons of expected size were obtained from the symptomatic plants, but not from the asymptomatic plants. To obtain restriction fragment length polymorphism (RFLP) patterns, the R16F2n/R2 amplicons were digested with AluI, TruI1, HpaII, and HhaI endonucleases. The resulting patterns indicated that seven plants were infected by a Stolbur phytoplasma belonging to the 16SrXII-A subgroup, since it had the identical RFLP pattern as the STOL reference strain. The 1.2 kb nested PCR products of representative isolate Sap7 were purified using PCR purification kit (Fermentas, Vilnius, Lithuania) according to the recommended protocol and sequenced using facilities of IMGGI SeqService, Belgrade, Serbia. The obtained sequence was deposited in the NCBI database (GenBank Accession No. JX866951). The phytoplasma 16S rRNA gene sequence from Sap7 had a sequence identity of 97% with GenBank accessions GQ273961.1 (‘Euonymus japonicus’ phytoplasma), JX311953.1 (Candidatus Phytoplasma solani clone 5043), JQ412100.1 (Iranian alfalfa phytoplasma M21), and JN561702.1 (‘Convolvulus arvensis’ stolbur phytoplasma clone P1/P7-Conv2/2010-Bg). To our knowledge, this is the first report of a natural infection of S. officinalis by 16SrXII-A subgroup (Stolbur) phytoplasma in Serbia. As cited by Lee et al. (1), the 16SrI-M subgroup phytoplasma in S. officinalis sample was already detected in Lithuania by Valiunas (2). The identification of phytoplasma in the Pancevo plantation caused the intensification of our biological control tests and efforts to reduce the ecological and economic impacts of these phytoplasmas. References: (1) I. M. Lee et al. Int. J. Syst. Evol. Microbiol. 54:1037, 2004. (2) D. Valiunas. PhD thesis, Institute of Botany, Vilnius, Lithuania, 2003.


2012 ◽  
Vol 62 (2) ◽  
pp. 322-329 ◽  
Author(s):  
William J. Wolfgang ◽  
An Coorevits ◽  
Jocelyn A. Cole ◽  
Paul De Vos ◽  
Michelle C. Dickinson ◽  
...  

Twelve independent isolates of a Gram-positive, endospore-forming rod were recovered from clinical specimens in New York State, USA, and from raw milk in Flanders, Belgium. The 16S rRNA gene sequences for all isolates were identical. The closest species with a validly published name, based on 16S rRNA gene sequence, is Sporosarcina koreensis (97.13 % similarity). DNA–DNA hybridization studies demonstrate that the new isolates belong to a species distinct from their nearest phylogenetic neighbours. The partial sequences of the 23S rRNA gene for the novel strains and their nearest neighbours also provide support for the novel species designation. Maximum-likelihood phylogenetic analysis of the 16S rRNA gene sequences confirmed that the new isolates are in the genus Sporosarcina. The predominant menaquinone is MK-7, the peptidoglycan has the type A4α l-Lys–Gly–d-Glu, and the polar lipids consist of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant fatty acids are iso-C14 : 0, iso-C15 : 0 and anteiso-C15 : 0. In addition, biochemical and morphological analyses support designation of the twelve isolates as representatives of a single new species within the genus Sporosarcina, for which the name Sporosarcina newyorkensis sp. nov. (type strain 6062T  = DSM 23544T  = CCUG 59649T  = LMG 26022T) is proposed.


2006 ◽  
Vol 55 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Ali Al-Ahmad ◽  
Thorsten Mathias Auschill ◽  
Gabriele Braun ◽  
Elmar Hellwig ◽  
Nicole Birgit Arweiler

This study was carried out in order to compare two PCR-based methods in the detection of Streptococcus mutans. The first PCR method was based on primers for the 16S rRNA gene and the second method was based on specific primers that targeted the glucosyltransferase gene (gtfB). Each PCR was performed with eight different streptococci from the viridans group, five other streptococci and 17 different non-streptococcal bacterial strains. Direct use of the S. mutans 16S rRNA gene-specific primers revealed that Streptococcus gordonii and Streptococcus infantis were also detected. After amplifying the 16S rRNA gene with universal primers and subsequently performing nested PCR, the S. mutans-specific nested primers based on the 16S rRNA gene detected all tested streptococci. There was no cross-reaction of the gtfB primers after direct PCR. Our results indicate that direct PCR and nested PCR based on 16S rRNA genes can reveal false-positive results for oral streptococci and lead to an overestimation of the prevalence of S. mutans with regards to its role as the most prevalent causative agent of dental caries.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1152-1152 ◽  
Author(s):  
S. Pavlovic ◽  
M. Starovic ◽  
S. Stojanovic ◽  
G. Aleksic ◽  
S. Kojic ◽  
...  

Pot marigold (Calendula officinalis L.) is native to southern Europe. Compounds of marigold flowers exhibit anti-inflammatory, anti-tumor-promoting, and cytotoxic activities (4). In Serbia, pot marigold is cultivated as an important medicinal and ornamental plant. Typical phyllody, virescence, proliferation of axillary buds, and witches' broom symptoms were sporadically observed in 2011 in Pancevo plantation, Serbia (44°51′49″ N, 20°39′33″ E, 80 m above sea level). Until 2013, the number of uniformly distributed affected pot marigold plants reached 20% in the field. Due to the lack of seed production, profitability of the cultivation was seriously affected. Leaf samples from 10 symptomatic and 4 symptomless marigold plants were collected and total nucleic acid was extracted from midrib tissue (3). Direct PCR and nested PCR were carried out with primer pairs P1/16S-SR and R16F2n/R16R2n, respectively (3). Amplicons 1.5 and 1.2 kb in length, specific for the 16S rRNA gene, were amplified in all symptomatic plants. No PCR products were obtained when DNA isolated from symptomless plants was used. Restriction fragment length polymorphism (RFLP) patterns of the 1.2-kb fragments of 16S rDNA were determined by digestion with four endonucleases separately (TruI1, AluI, HpaII, and HhaI) and compared with those of Stolbur (Stol), Aster Yellows (AY), Flavescence dorée-C (FD-C), Poinsettia Branch-Inducing (PoiBI), and Clover Yellow Edge (CYE) phytoplasmas (2). RFLP patterns from all symptomatic pot marigold plants were identical to the Stol pattern, indicating Stolbur phytoplasma presence in affected plants. The 1.2-kb amplicon of representative Nv8 strain was sequenced and the data were submitted to GenBank (accession no. KJ174507). BLASTn analysis of the sequence was compared with sequences available in GenBank, showing 100% identity with 16S rRNA gene of strains from Paeonia tenuifolia (KF614623) and corn (JQ730750) from Serbia, and peach (KF263684) from Iran. All of these are members of the 16SrXII ‘Candidatus Phytoplasma solani’ group, subgroup A (Stolbur). Phytoplasmas belonging to aster yellows (16SrI) (Italy and Canada) and peanut witches' broom related phytoplasma (16SrII) group (Iran) have been identified in diseased pot marigold plants (1). To our knowledge, this is the first report of natural infection of pot marigold by Stolbur phytoplasma in Serbia. References: (1) S. A. Esmailzadeh-Hosseini et al. Bull. Insectol. 64:S109, 2011. (2) I. M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) J. P. Prince. Phytopathology 83:1130, 1993. (4) M. Ukiya et al. J. Nat. Prod. 69:1692, 2006.


2005 ◽  
Vol 71 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Anne-Ga�lle Le Bourhis ◽  
Katiana Saunier ◽  
Jo�l Dor� ◽  
Jean-Philippe Carlier ◽  
Jean-Fran�ois Chamba ◽  
...  

ABSTRACT A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g.


1999 ◽  
Vol 37 (4) ◽  
pp. 964-970 ◽  
Author(s):  
Elvira Richter ◽  
Stefan Niemann ◽  
Sabine Rüsch-Gerdes ◽  
Sven Hoffner

The newly formulated Mycobacterium kansasii AccuProbe was evaluated, and the results obtained with the new version were compared to the results obtained with the old version of this test by using 116 M. kansasii strains, 1 Mycobacterium gastri strain, and 19 strains of several mycobacterial species. The sensitivity of this new formulation was 97.4% and the specificity was 100%. Still, three M. kansasii strains were missed by this probe. To evaluate the variability within the species, genetic analyses of the hsp65 gene, the spacer sequence between the 16S and 23S rRNA genes, and the 16S rRNA gene of several M. kansasii AccuProbe-positive strains as well as all AccuProbe-negative strains were performed. Genetic analyses of the oneM. gastri strain from the comparative assay and of two further M. gastri strains were included because of the identity of the 16S rRNA gene in M. gastri to that inM. kansasii. The data confirmed the genetic heterogeneity of M. kansasii. Furthermore, a subspecies with an unpublished hsp65 restriction pattern and spacer sequence was described. The genetic data indicate that all M. kansasii strains missed by the AccuProbe test belong to one subspecies, the newly described subspecies VI, as determined by thehsp65 restriction pattern and the spacer sequence. Since the M. kansasii strains that are missed are rare and allM. gastri strains are correctly negative, the new formulated AccuProbe provides a useful tool for the identification ofM. kansasii.


2007 ◽  
Vol 57 (11) ◽  
pp. 2720-2724 ◽  
Author(s):  
Donovan P. Kelly ◽  
Yoshihito Uchino ◽  
Harald Huber ◽  
Ricardo Amils ◽  
Ann P. Wood

The published sequence of the 16S rRNA gene of Thiomonas cuprina strain Hö5 (=DSM 5495T) (GenBank accession no. U67162) was found to be erroneous. The 16S rRNA genes from the type strain held by the DSMZ since 1990 (DSM 5495T =NBRC 102145T) and strain Hö5 maintained frozen in the Universität Regensburg for 23 years (=NBRC 102094) were sequenced and found to be identical, but to show no significant similarity to the U67162 sequence. This also casts some doubt on the previously published 5S and 23S rRNA gene sequences (GenBank accession nos U67171 and X75567). The correct 16S rRNA gene sequence showed 99.8 % identity to those from Thiomonas delicata NBRC 14566T and ‘Thiomonas arsenivorans’ DSM 16361. The properties of these three species are re-evaluated, and emended descriptions are provided for the genus Thiomonas and the species Thiomonas cuprina.


Sign in / Sign up

Export Citation Format

Share Document