Mesenchymal Stem Cells and Haematopoietic Stem Cell Culture

2012 ◽  
pp. 161-172 ◽  
Author(s):  
Matthew M. Cook
2018 ◽  
Vol 4 (1) ◽  
pp. 205521731876528 ◽  
Author(s):  
Sarah M Planchon ◽  
Karen T Lingas ◽  
Jane Reese Koç ◽  
Brittney M Hooper ◽  
Basabi Maitra ◽  
...  

Background Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients’ mesenchymal stem cells for clinical trials is limited. Objective To determine the feasibility of culture-expanding multiple sclerosis patients’ mesenchymal stem cells for clinical use. Methods In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1–2 × 106 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. Results One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16–62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Conclusion Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.


2017 ◽  
Vol 37 (7) ◽  
pp. 647-660 ◽  
Author(s):  
Saradaprasan Muduli ◽  
Li-Hua Chen ◽  
Meng-Pei Li ◽  
Zhao-wen Heish ◽  
Cheng-Hui Liu ◽  
...  

Abstract The physical characteristics of cell culture materials, such as their elasticity, affect stem cell fate with respect to cell proliferation and differentiation. We systematically investigated the morphologies and characteristics of several stem cell types, including human amniotic-derived stem cells, human hematopoietic stem cells, human induced pluripotent stem (iPS) cells, and embryonic stem (ES) cells on poly(vinyl alcohol) (PVA) hydrogels immobilized with and without extracellular matrix-derived oligopeptide. Human ES cells did not adhere well to soft PVA hydrogels immobilized with oligovitronectin, whereas they did adhere well to PVA hydrogel dishes with elasticities greater than 15 kPa. These results indicate that biomaterials such as PVA hydrogels should be designed to possess minimum elasticity to facilitate human ES cell attachment. PVA hydrogels immobilized with and without extracellular matrix-derived oligopeptides are excellent candidates of cell culture biomaterials for investigations into how cell culture biomaterial elasticity affects stem cell culture and differentiation.


2020 ◽  
Author(s):  
Cécilie Martin-Lemaitre ◽  
Yara Alcheikh ◽  
Ronald Naumann ◽  
Alf Honigmann

SummaryIn vitro stem cell culture is demanding in terms of manpower and media supplements. In recent years, new protocols have been developed to expand pluripotent embryonic stem cells in suspension culture, which greatly simplifies cell handling and scalability. However, it is still unclear how suspension culture protocols with different supplements affect pluripotency, cell homogeneity and cell differentiation compared to established adherent culture methods. Here we tested four different culture conditions for mouse embryonic stem cells (mESC) and quantified chimerism and germ line transmission as well as in vitro differentiation into three-dimensional neuro-epithelia. We found that suspension culture supplemented with CHIR99021/LIF offers the best compromise between culturing effort, robust pluripotency and cell homogeneity. Our work provides a guideline for simplifying mESC culture and should encourage more cell biology labs to use stem cell-based organoids as model systems.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27672 ◽  
Author(s):  
Dai Fei Elmer Ker ◽  
Lee E. Weiss ◽  
Silvina N. Junkers ◽  
Mei Chen ◽  
Zhaozheng Yin ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Pilar Carreras ◽  
Itziar González ◽  
Miguel Gallardo ◽  
Alejandra Ortiz-Ruiz ◽  
Maria Luz Morales ◽  
...  

We previously reported a new approach for micromanipulation and encapsulation of human stem cells using a droplet-based microfluidic device. This approach demonstrated the possibility of encapsulating and culturing difficult-to-preserve primary human hematopoietic stem cells using an engineered double-layered bead composed by an inner layer of alginate and an outer layer of Puramatrix. We also demonstrated the maintenance and expansion of Multiple Myeloma cells in this construction. Here, the presented microfluidic technique is applied to construct a 3D biomimetic model to recapitulate the human hematopoietic stem cell niche using double-layered hydrogel beads cultured in 10% FBS culture medium. In this model, the long-term maintenance of the number of cells and expansion of hHSCS encapsulated in the proposed structures was observed. Additionally, a phenotypic characterization of the human hematopoietic stem cells generated in the presented biomimetic model was performed in order to assess their long-term stemness maintenance. Results indicate that the ex vivo cultured human CD34+ cells from bone marrow were viable, maintained, and expanded over a time span of eight weeks. This novel long-term stem cell culture methodology could represent a novel breakthrough to improve Hematopoietic Progenitor cell Transplant (HPT) as well as a novel tool for further study of the biochemical and biophysical factors influencing stem cell behavior. This technology opens a myriad of new applications as a universal stem cell niche model potentially able to expand other types of cells.


Sign in / Sign up

Export Citation Format

Share Document