scholarly journals Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86031 ◽  
Author(s):  
Tara Quang ◽  
Maribel Marquez ◽  
Giselle Blanco ◽  
Yuanxiang Zhao
2012 ◽  
Vol 23 (1-4) ◽  
pp. 153-165 ◽  
Author(s):  
Yusuke Ueda ◽  
Satoshi Fujita ◽  
Tatsuya Nishigaki ◽  
Yusuke Arima ◽  
Hiroo Iwata

2018 ◽  
Vol 4 (1) ◽  
pp. 205521731876528 ◽  
Author(s):  
Sarah M Planchon ◽  
Karen T Lingas ◽  
Jane Reese Koç ◽  
Brittney M Hooper ◽  
Basabi Maitra ◽  
...  

Background Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients’ mesenchymal stem cells for clinical trials is limited. Objective To determine the feasibility of culture-expanding multiple sclerosis patients’ mesenchymal stem cells for clinical use. Methods In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1–2 × 106 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. Results One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16–62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Conclusion Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.


2018 ◽  
Vol 27 (24) ◽  
pp. 1702-1714 ◽  
Author(s):  
Lucas-Sebastian Spitzhorn ◽  
Claus Kordes ◽  
Matthias Megges ◽  
Iris Sawitza ◽  
Silke Götze ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0118931 ◽  
Author(s):  
Yasuko Onuma ◽  
Kumiko Higuchi ◽  
Yasuhiko Aiki ◽  
Yujing Shu ◽  
Masahiro Asada ◽  
...  

Stem Cells ◽  
2012 ◽  
Vol 30 (12) ◽  
pp. 2692-2699 ◽  
Author(s):  
Yue-Qi Sun ◽  
Meng-Xia Deng ◽  
Jia He ◽  
Qing-Xiang Zeng ◽  
Weiping Wen ◽  
...  

2020 ◽  
Vol 44 ◽  
pp. 101721 ◽  
Author(s):  
Lydiane Pichard ◽  
Jean-Marc Brondelo ◽  
Fabienne Becker ◽  
Romain Desprat ◽  
Frédéric De Ceuninck ◽  
...  

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Elaheh Karbassi ◽  
Alessandro Bertero ◽  
Shin Kadota ◽  
Paul Fields ◽  
Lil Pabon ◽  
...  

Human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) applications for cell therapy and disease modeling are limited due to the cells’ lack of resemblance structurally and functionally to adult cardiomyocytes. To understand hPSC-CM maturation, we characterized two established approaches to mature cardiomyocytes—long term culture (aging of cells in a dish) and in vivo transplantation to an infarcted adult rat heart. RNA sequencing of hPSC-CMs from these systems demonstrated that in vivo transplantation is much more effective in maturing hPSC-CMs, inducing a more adult-like cardiac gene program (e.g. upregulation of TNNI3, MYL2, SCN5A ), compared to cells kept in culture up to one year. Using this dataset, we identified candidate drivers of hPSC-CM maturation, including transcription factors and chromatin regulators, that we hypothesize are necessary to program hPSC-CMs to an adult-like state. To test the relationship between transcription factor regulation and hPSC-CM maturation, we developed a constitutive CRISPR activation (CRISPRa) pluripotent stem cell line to upregulate these transcriptional regulators upon addition of guide RNAs (gRNA). This cell line expresses nuclease-deficient Cas9 fused to the transcriptional activator VPR (dCas9-VPR), driven by the strong CAG promoter and targeted to the AAVS1 safe harbor site. In pluripotent stem cells, target genes are upregulated up to 150-fold when gRNA is present; however, after differentiation into cardiomyocytes, dCas9-VPR transgene expression is silenced, and dCas9-VPR levels are insufficient to activate gRNA-targeted genes. To optimize CRISPRa for cardiomyocyte applications, we are generating alternative stem cell lines with dCas9-VPR targeted to the human ROSA26 safe harbor site or driven by a cardiac-specific troponin T promoter, testing the regulation of transgene expression mediated by safe harbor site or promoter respectively. The characterization of these CRISPRa cell lines provides insights into CRISPR expression regulation and genome engineering strategies for applications in stem cells and hPSC-CMs. We will use this system to screen for maturation regulators and identify key combinations that are effective in programming hPSC-CMs towards an adult-like state.


Sign in / Sign up

Export Citation Format

Share Document