Global Analysis of Autocorrelation Functions and Photon Counting Distributions in Fluorescence Fluctuation Spectroscopy

Author(s):  
Victor V. Skakun ◽  
Anatoli V. Digris ◽  
Vladimir V. Apanasovich
2021 ◽  
Vol 22 (14) ◽  
pp. 7300
Author(s):  
Laura M. Nederveen-Schippers ◽  
Pragya Pathak ◽  
Ineke Keizer-Gunnink ◽  
Adrie H. Westphal ◽  
Peter J. M. van Haastert ◽  
...  

Protein dimerization plays a crucial role in the regulation of numerous biological processes. However, detecting protein dimers in a cellular environment is still a challenge. Here we present a methodology to measure the extent of dimerization of GFP-tagged proteins in living cells, using a combination of fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis of single-color fluorescence fluctuation data. We named this analysis method brightness and diffusion global analysis (BDGA) and adapted it for biological purposes. Using cell lysates containing different ratios of GFP and tandem-dimer GFP (diGFP), we show that the average brightness per particle is proportional to the fraction of dimer present. We further adapted this methodology for its application in living cells, and we were able to distinguish GFP, diGFP, as well as ligand-induced dimerization of FKBP12 (FK506 binding protein 12)-GFP. While other analysis methods have only sporadically been used to study dimerization in living cells and may be prone to errors, this paper provides a robust approach for the investigation of any cytosolic protein using single-color fluorescence fluctuation spectroscopy.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 735-745
Author(s):  
Eleonora Perego ◽  
Sarah Köster

The combination of photon counting histogram and microfluidic mixing reveals early time points in reaction kinetics of biomolecule aggregation.


2020 ◽  
Vol 10 (11) ◽  
pp. 4045
Author(s):  
Alexandra Fălămaș ◽  
Sebastian A. Porav ◽  
Valer Tosa

Understanding the energy transfer in phycobilisomes extracted from cyanobacteria can be used for building biomimetic hybrid systems for optimized solar energy collection and photocurrent amplification. In this paper, we applied time-resolved absorption and fluorescence spectroscopy to investigate the ultrafast dynamics in a hemidiscoidal phycobilisome obtained from Arthrospira platensis. We obtained the steady-state and time-resolved optical properties and identified the possible pathways of the excitation energy transfer in the phycobilisome and its components, phycocyanin and allophycocyanin. The transient absorption data were studied using global analysis and revealed the existence of ultrafast kinetics down to 850 fs in the phycobilisome. The fluorescence lifetimes in the nanosecond time-scale assigned to the final emitters in each sample were obtained from the time-correlated single photon counting fluorescence experiments.


1996 ◽  
Vol 61 (5) ◽  
pp. 808-818 ◽  
Author(s):  
Martin Hof ◽  
Stefan Vajda ◽  
Vlastimil Fidler ◽  
Vladimír Karpenko

The state of three tryptophyl residues in human serum orosomucoid was estimated by prediction methods based on parameters characterizing their hydrophobicity either directly, or in terms of buried surfaces of the individual amino acid residues. It is shown that tryptophan 25 is the most buried, while Trp 160 is the most exposed to the solvent. Trp 122 is in this respect in an intermediate state. The fluorescence decay behaviour was determined using a picosecond single photon counting system. The multiwavelength data were analyzed using a global analysis as well as a distribution of lifetimes program. Both procedures yielded the existence of four wavelength independent lifetimes (0.22 ns, 1.0 ns, 2.5 ns, and 8.4 ns). A tentative assignment of the decay associated spectra of the four components to the three individual tryptophans is presented.


1999 ◽  
Vol 77 (1) ◽  
pp. 553-567 ◽  
Author(s):  
Yan Chen ◽  
Joachim D. Müller ◽  
Peter T.C. So ◽  
Enrico Gratton

Sign in / Sign up

Export Citation Format

Share Document