scholarly journals Two-Photon Microscopy to Measure Blood Flow and Concurrent Brain Cell Activity

Author(s):  
Andy Y. Shih ◽  
Jonathan D. Driscoll ◽  
Michael J. Pesavento ◽  
David Kleinfeld
2012 ◽  
Vol 32 (7) ◽  
pp. 1277-1309 ◽  
Author(s):  
Andy Y Shih ◽  
Jonathan D Driscoll ◽  
Patrick J Drew ◽  
Nozomi Nishimura ◽  
Chris B Schaffer ◽  
...  

The cerebral vascular system services the constant demand for energy during neuronal activity in the brain. Attempts to delineate the logic of neurovascular coupling have been greatly aided by the advent of two-photon laser scanning microscopy to image both blood flow and the activity of individual cells below the surface of the brain. Here we provide a technical guide to imaging cerebral blood flow in rodents. We describe in detail the surgical procedures required to generate cranial windows for optical access to the cortex of both rats and mice and the use of two-photon microscopy to accurately measure blood flow in individual cortical vessels concurrent with local cellular activity. We further provide examples on how these techniques can be applied to the study of local blood flow regulation and vascular pathologies such as small-scale stroke.


2016 ◽  
Vol 37 (2) ◽  
pp. 657-670 ◽  
Author(s):  
Miyuki Unekawa ◽  
Yutaka Tomita ◽  
Kazuto Masamoto ◽  
Haruki Toriumi ◽  
Takashi Osada ◽  
...  

Cortical spreading depression (CSD) induces marked hyperemia with a transient decrease of regional cerebral blood flow (rCBF), followed by sustained oligemia. To further understand the microcirculatory mechanisms associated with CSD, we examined the temporal changes of diameter of intraparenchymal penetrating arteries during CSD. In urethane-anesthetized mice, the diameter of single penetrating arteries at three depths was measured using two-photon microscopy during passage of repeated CSD, with continuous recordings of direct current potential and rCBF. The first CSD elicited marked constriction superimposed on the upstrokes of profound dilation throughout each depth of the penetrating artery, and the vasoreaction temporally corresponded to the change of rCBF. Second or later CSD elicited marked dilation with little or no constriction phase throughout each depth, and the vasodilation also temporally corresponded to the increase of rCBF. Furthermore, the peak dilation showed good negative correlations with basal diameter and increase of rCBF. Vasodilation induced by 5% CO2 inhalation was significantly suppressed after CSD passage at any depth as well as hyperperfusion. These results may indicate that CSD-induced rCBF changes mainly reflect the diametric changes of the intraparenchymal arteries, despite the elimination of responsiveness to hypercapnia.


2013 ◽  
Vol 54 (5) ◽  
Author(s):  
Andrin Landolt ◽  
Dominik Obrist ◽  
Matthias Wyss ◽  
Matthew Barrett ◽  
Dominik Langer ◽  
...  

2010 ◽  
Vol 30 (12) ◽  
pp. 1914-1927 ◽  
Author(s):  
Nozomi Nishimura ◽  
Nathanael L Rosidi ◽  
Costantino Iadecola ◽  
Chris B Schaffer

Occlusions of penetrating arterioles, which plunge into cortex and feed capillary beds, cause severe decreases in blood flow and are potential causes of ischemic microlesions. However, surrounding arterioles and capillary beds remain flowing and might provide collateral flow around the occlusion. We used femtosecond laser ablation to trigger clotting in single penetrating arterioles in rat cortex and two-photon microscopy to measure changes in microvessel diameter and red blood cell speed after the clot. We found that after occlusion of a single penetrating arteriole, nearby penetrating and surface arterioles did not dilate, suggesting that alternate blood flow routes are not actively recruited. In contrast, capillaries showed two types of reactions. Capillaries directly downstream from the occluded arteriole dilated after the clot, but other capillaries in the same vicinity did not dilate. This heterogeneity in capillary response suggests that signals for vasodilation are vascular rather than parenchymal in origin. Although both neighboring arterioles and capillaries dilated in response to topically applied acetylcholine after the occlusion, the flow in the territory of the occluded arteriole did not improve. Collateral flow from neighboring penetrating arterioles is neither actively recruited nor effective in improving blood flow after the occlusion of a single penetrating arteriole.


2013 ◽  
Vol 33 (2) ◽  
pp. 319-319 ◽  
Author(s):  
Andy Y Shih ◽  
Jonathan D Driscoll ◽  
Patrick J Drew ◽  
Nozomi Nishimura ◽  
Chris B Schaffer ◽  
...  

2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

Sign in / Sign up

Export Citation Format

Share Document