Hydrogen Fusion: Light Nuclei and Theory of Fusion Reactions

2011 ◽  
pp. 15-32 ◽  
Author(s):  
Mitsuru Kikuchi
Engevista ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 1496
Author(s):  
Relly Victoria Virgil Petrescu ◽  
Raffaella Aversa ◽  
Antonio Apicella ◽  
Florian Ion Petrescu

Despite research carried out around the world since the 1950s, no industrial application of fusion to energy production has yet succeeded, apart from nuclear weapons with the H-bomb, since this application does not aims at containing and controlling the reaction produced. There are, however, some other less mediated uses, such as neutron generators. The fusion of light nuclei releases enormous amounts of energy from the attraction between the nucleons due to the strong interaction (nuclear binding energy). Fusion it is with nuclear fission one of the two main types of nuclear reactions applied. The mass of the new atom obtained by the fusion is less than the sum of the masses of the two light atoms. In the process of fusion, part of the mass is transformed into energy in its simplest form: heat. This loss is explained by the Einstein known formula E=mc2. Unlike nuclear fission, the fusion products themselves (mainly helium 4) are not radioactive, but when the reaction is used to emit fast neutrons, they can transform the nuclei that capture them into isotopes that some of them can be radioactive. In order to be able to start and to be maintained with the success the nuclear fusion reactions, it is first necessary to know all this reactions very well. This means that it is necessary to know both the main reactions that may take place in a nuclear reactor and their sense and effects. The main aim is to choose and coupling the most convenient reactions, forcing by technical means for their production in the reactor. Taking into account that there are a multitude of possible variants, it is necessary to consider in advance the solutions that we consider them optimal. The paper takes into account both variants of nuclear fusion, and cold and hot. For each variant will be mentioned the minimum necessary specifications.


2012 ◽  
Vol 27 (06) ◽  
pp. 1250037 ◽  
Author(s):  
O. N. GHODSI ◽  
R. GHARAEI

Using the Monte Carlo simulation method accompanied by the modifying effects of the density distributions overlapping, we have examined the nuclear matter incompressibility effects for asymmetric systems with light nuclei, namely 16 O +27 Al and 16 O +28 Si fusion reactions. The obtained results show that the nuclear equation of state has considerable influence on the calculation of fusion probabilities for these asymmetric systems.


2020 ◽  
Author(s):  
Miguel Ramos-Pascual

Fusion reactions in the deuterium cycle (D+D, D+T and D+3He) are the main nucleus-nucleus interactions which occur in tokamaks and stellerators. These reactions are the limiting case between the Woods-Saxon potential field at nuclear distances and the Coulomb electrostatic potential (scattering) at longer distances. In this paper several fusion cross-sections, geometric, Gamow-Sommerfeld and astrophysical S-factors have been reviewed and compared with experimental data from the last ENDF/B-VIII.0 cross-section library. The XDC-fusion code has been developed to calculate fusion cross-sections, geometric, Gamow-Sommerfeld and S-factors of the deuterium-cycle (D-cycle), including resonance parameters (energy and partial width). The software estimates also fusion reaction heat (Q) and Woods-Saxon/Coulomb proximity potentials. Although relative differences between fusion cross-sections are lower than 5 %, S-factors present considerable differences between the energies and partial width (FWHM) of the single-level Breit-Wigner (SLBW) resonances. The energy at which is placed the maximum fusion cross-section is also different between cases. In conclusion, fusion reaction models for light nuclei (deuterium, tritium and helium) should be reviewed in order to apply fusion to energy production in safety conditions.


2019 ◽  
Vol 986 ◽  
pp. 98-106 ◽  
Author(s):  
Vinay Singh ◽  
Debasis Atta ◽  
Md.A. Khan ◽  
D.N. Basu

2019 ◽  
Vol 50 (3) ◽  
pp. 305
Author(s):  
G. Casini ◽  
A. Camaiani ◽  
L. Morelli ◽  
S. Barlini ◽  
S. Piantelli ◽  
...  

2010 ◽  
Vol 834 (1-4) ◽  
pp. 180c-182c ◽  
Author(s):  
Ş. Mişicu ◽  
F. Carstoiu

2018 ◽  
Vol 189 ◽  
pp. 00015
Author(s):  
J. Ongena

Nuclear physics shows that energy can be released from both fission of heavy nuclei and fusion of light nuclei. Steady progress shows that fusion — an important additional option for energy production in the future — promises to be a clean and safe solution for mankind’s long-term energy needs with minimal environmental impact. A source of energy which would be inexhaustible, inherently safe and environmentally friendly, is this not a marvellous prospect? Nuclear fusion, a possible candidate for this role, has been the energy source of our Sun and the stars in the universe for billions of years. This process requires temperatures of tens of millions of degrees, so extremely high and foreign to our daily experience that it seems out of reach. Nevertheless, these extremely high temperatures are routinely realised in several laboratories all over the world, and since the early 1990s, tens of MW fusion power have been released from fusion reactions. We are witnessing the birth of a new technology destined to meet the gigantic future energy needs of mankind with minimal impact on the environment.


1990 ◽  
Vol 160 (8) ◽  
pp. 47-103 ◽  
Author(s):  
Leonid I. Men'shikov ◽  
L.N. Somov

Author(s):  
Roger H. Stuewer

Serious contradictions to the existence of electrons in nuclei impinged in one way or another on the theory of beta decay and became acute when Charles Ellis and William Wooster proved, in an experimental tour de force in 1927, that beta particles are emitted from a radioactive nucleus with a continuous distribution of energies. Bohr concluded that energy is not conserved in the nucleus, an idea that Wolfgang Pauli vigorously opposed. Another puzzle arose in alpha-particle experiments. Walther Bothe and his co-workers used his coincidence method in 1928–30 and concluded that energetic gamma rays are produced when polonium alpha particles bombard beryllium and other light nuclei. That stimulated Frédéric Joliot and Irène Curie to carry out related experiments. These experimental results were thoroughly discussed at a conference that Enrico Fermi organized in Rome in October 1931, whose proceedings included the first publication of Pauli’s neutrino hypothesis.


1961 ◽  
Vol 77 (4) ◽  
pp. 853-865 ◽  
Author(s):  
F de S Barros ◽  
P D Forsyth ◽  
A A Jaffe ◽  
I J Taylor
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document