Lidar Measurement of Boundary-Layer Variables

Author(s):  
R. L. Schwiesow
1980 ◽  
Vol 19 (5) ◽  
pp. 598-605 ◽  
Author(s):  
Jeffery T. Sroga ◽  
Edwin W. Eloranta ◽  
Ted Barber

2019 ◽  
Vol 11 (3) ◽  
pp. 263 ◽  
Author(s):  
Ruijun Dang ◽  
Yi Yang ◽  
Hong Li ◽  
Xiao-Ming Hu ◽  
Zhiting Wang ◽  
...  

Accurate estimation of the atmospheric boundary layer height (ABLH) is critically important and it mainly relies on the detection of the vertical profiles of atmosphere variables (temperature, humidity,’ and horizontal wind speed) or aerosols. Aerosol Lidar is a powerful remote sensing instrument frequently used to retrieve ABLH through the detection of the vertical distribution of aerosol concentration. A challenge is that cloud, residual layer (RL), and local signal structure seriously interfere with the lidar measurement of ABLH. A new objective technique presenting as giving a top limiter altitude is introduced to reduce the interference of RL and cloud layer on ABLH determination. Cloud layers are identified by looking for the rapid increase and sharp attenuation of the signal combined with the relative increase in the signal. The cloud layers weather overlay are classified or are decoupled from the ABL by analyzing the continuity of the signal below the cloud base. For cloud layer capping of the ABL, the limiter is determined to be the altitude where a positive signal gradient first occurs above the cloud upper edge. For a cloud that is decoupled from the ABL, the cloud base is considered to be the altitude limiter. For RL in the morning, the altitude limiter is the greatest positive gradient altitude below the RL top. The ABLH will be determined below the top limiter altitude using Haar wavelet (HM) and the curve fitting method (CFM). Besides, the interference of local signal noise is eliminated through consideration of the temporal continuity. While comparing the lidar-determined ABLH by HM (or CFM) and nearby radiosonde measurements of the ABLH, a reasonable concordance is found with a correlation coefficient of 0.94 (or 0.96) and 0.79 (or 0.74), presenting a mean of the relative absolute differences with respect to radiosonde measurements of 10.5% (or 12.3%) and 22.3% (or 17.2%) for cloud-free and cloudy situations, respectively. The diurnal variations in the ABLH determined from HM and CFM on four selected cases show good agreement with a mean correlation coefficient higher than 0.99 and a mean absolute bias of 0.22 km. Also, the determined diurnal ABLH are consistent with surface turbulent kinetic energy (TKE) combined with the time-height distribution of the equivalent potential temperature.


2012 ◽  
Vol 5 (1) ◽  
pp. 1233-1251 ◽  
Author(s):  
Z. Wang ◽  
X. Cao ◽  
L. Zhang ◽  
J. Notholt ◽  
B. Zhou ◽  
...  

Abstract. Using the wavelet technology method and lidar measurements the atmospheric boundary layer height was derived above the city of Lanzhou (China) and its suburb rural area – Yuzhong. Furthermore, at Yuzhong, the average boundary layer height and entrainment zone thickness was derived in convective situations. Simultaneously the boundary layer height was derived from the microwave observations using a profiling radiometer and the parcel method. The results show that both data sets agree in strong convective situations. However, for weak convective situations the lidar measurements reveal boundary layer heights that are higher compared to the microwave observations, because a decrease of the thermal boundary layer height does not directly lead to a drop of aerosols in that altitude layer. Finally, the entrainment zone thicknesses are compared with theoretical predictions, and the results show some consistence between both data sets.


2012 ◽  
Vol 5 (8) ◽  
pp. 1965-1972 ◽  
Author(s):  
Z. Wang ◽  
X. Cao ◽  
L. Zhang ◽  
J. Notholt ◽  
B. Zhou ◽  
...  

Abstract. The atmospheric boundary layer height was derived at two locations in the city of Lanzhou (China) and its suburb rural area Yuzhong. The aerosol backscatter lidar measurements were analysed using a wavelet technology and the parcel method was applied to profiling microwave radiometer observations. For a few occasions the average boundary layer height and entrainment zone thickness was derived in convective situations at Yuzhong. Results from selected observation days show that both datasets agree in strong convective situations. However, for weak convective situations the lidar measurements reveal boundary layer heights that are higher compared to the microwave observations, because a decrease of the thermal boundary layer height does not directly lead to a change of aerosols in that altitude layer. Finally, the entrainment zone thicknesses are compared with theoretical predictions, and the results show that the measurements are compatible with theoretical models.


2005 ◽  
Vol 6 (6) ◽  
pp. 840-853 ◽  
Author(s):  
W. E. Eichinger ◽  
H. E. Holder ◽  
R. Knight ◽  
J. Nichols ◽  
D. I. Cooper ◽  
...  

Abstract The Soil Moisture–Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high-time-resolution continuous record of the boundary layer height at the edge between a soybean and cornfield. The height and thickness of the entrainment zone are used to estimate the surface sensible heat flux using the Batchvarova–Gryning boundary layer model. Flux estimates made over 6 days are compared to conventional eddy correlation measurements. The calculated values of the sensible heat flux were found to be well correlated (R2 = 0.79, with a slope of 0.95) when compared to eddy correlation measurements in the area. The standard error of the flux estimates was 21.4 W m−2 (31% rms difference between this method and surface measurements), which is somewhat higher than a predicted uncertainty of 16%. The major sources of error were from the estimates of the vertical potential temperature gradient and an assumption that the entrainment parameter A was equal to the ratio of the entrainment flux and the surface heat flux.


2021 ◽  
Author(s):  
James Abshire ◽  
Scott Guzewich ◽  
Daniel Cremons ◽  
Michael Smith ◽  
Kenji Numata ◽  
...  

<p>The planetary boundary layer (PBL) is the lowest layer of the atmosphere that interacts directly with the surface. For Mars and Titan, processes within the PBL are very important scientifically because they control the transfer of heat, momentum, dust, water, and other constituents between surface and atmospheric reservoirs. For Mars understanding these processes is critical for understanding the modern climate, including the stability and development of the polar caps how the regolith exchanges with the atmosphere how wind shapes the landscape how dust is lifted and transported and for being able to validate and improve general circulation models (GCMs). The PBL is also critical for operations since it is the environment in which landed missions must operate.</p> <p>On Mars the PBL depth varies between roughly 1 and 10 km, depending on time of day, with the deepest layer occurring during the day when convective turbulence is greatest. The PBL is difficult to observe from orbit, and so detailed observations of it have been mostly limited to those just at the surface from landers. The lack of PBL observations has led to significant gaps of understanding in several key areas. These include diurnal variations of aerosols, water vapor and direct measurements of wind velocity, the combination of which provides information on the horizontal and vertical transport of water, dust, and other trace species and their exchange with the surface. The Mars atmosphere has complex interactions between its dust, water and CO<sub>2</sub> cycles. Because these quantities are interrelated and they partially drive the wind fields, it is important to measure the water vapor, aerosols, and winds simultaneously, ideally using a single instrument.</p> <p>We are developing and plan to demonstrate a breadboard of small, highly capable atmospheric lidar to address these needs for a future lander on Mars or Titan. The lidar is designed to measure vertically-resolved profiles of water vapor by using a single frequency laser. The laser will be tuned onto and off strong isolated water vapor lines near 1911 nm. The vertical distribution of water vapor will be determined from the on- and off-line backscatter profiles via the differential absorption lidar (DIAL) technique. The same laser is used for measuring aerosol and wind profiles via the Doppler shift in the backscatter. The laser beam is linearly polarized and a cross polarized receiver allows separating the backscatter of water ice from dust.  It emits two beams that are offset 30 deg from zenith and perpendicular to one another in azimuth, allowing directional wind profiles to be resolved. Both lidar measurement channels are otherwise identical and use common lens-type receiver telescopes.</p> <p>These lidar measurements address important science needs that are traceable to Mars Exploration Program Analysis Group (MEPAG) science goals relating to climate, surface-atmosphere interactions, and preparing for human exploration.  Our lidar will measure vertical profiles of water vapor, and dust and water ice aerosols and winds with km-scale vertical resolution from the surface to > 15 km altitude.  These measurements will directly profile the full planetary boundary layer, which is key for understanding how water, dust, CO<sub>2</sub> and trace species exchange between surface and atmosphere.  The lidar will provide observations of all quantities simultaneously. </p> <p>Only one atmospheric lidar has been previously flown on a planetary lander. The lidar on the Phoenix Mars lander mission (Komguem et al., 2013) successfully measured aerosol backscatter profiles at 1064 nm and 532 nm as a function of altitude and time (Whiteway, et al., 2008). The lidar also measured cloud and ice scattering profiles and measured falling ice over the Phoenix Lander site (Whiteway, 2009).</p> <p>Our lidar approach is designed to provide several important new capabilities. It will measure, for the first time, water vapor profiles from 100 m to 15 km, along with wind and aerosol profiles at 1911 nm. Our approach utilizes a highly sensitive HgCdTe avalanche photodiode detector as a key component of the lidar receiver. During the next 2 years of this project, our plan is to develop the remaining lidar components from TRL 2 to 4, and to use the breadboard lidar to demonstrate profile measurements of aerosols, water vapor and wind from the Mauna Kea Hawaii astronomy site</p> <p><em>Acknowledgement:</em> This work is supported by an award from the 2019 NASA PICASSO program.</p>


Sign in / Sign up

Export Citation Format

Share Document