scholarly journals A New Sensory Feedback System for Lower-Limb Amputees: Assessment of Discrete Vibrotactile Stimuli Perception During Walking

Author(s):  
Mariangela Filosa ◽  
Ilaria Cesini ◽  
Elena Martini ◽  
Giacomo Spigler ◽  
Nicola Vitiello ◽  
...  
Author(s):  
Ilaria Cesini ◽  
Giacomo Spigler ◽  
Sahana Prasanna ◽  
Domitilla Taxis ◽  
Filippo Dell’Agnello ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric J. Earley ◽  
Reva E. Johnson ◽  
Jonathon W. Sensinger ◽  
Levi J. Hargrove

AbstractAccurate control of human limbs involves both feedforward and feedback signals. For prosthetic arms, feedforward control is commonly accomplished by recording myoelectric signals from the residual limb to predict the user’s intent, but augmented feedback signals are not explicitly provided in commercial devices. Previous studies have demonstrated inconsistent results when artificial feedback was provided in the presence of vision; some studies showed benefits, while others did not. We hypothesized that negligible benefits in past studies may have been due to artificial feedback with low precision compared to vision, which results in heavy reliance on vision during reaching tasks. Furthermore, we anticipated more reliable benefits from artificial feedback when providing information that vision estimates with high uncertainty (e.g. joint speed). In this study, we test an artificial sensory feedback system providing joint speed information and how it impacts performance and adaptation during a hybrid positional-and-myoelectric ballistic reaching task. We found that overall reaching errors were reduced after perturbed control, but did not significantly improve steady-state reaches. Furthermore, we found that feedback about the joint speed of the myoelectric prosthesis control improved the adaptation rate of biological limb movements, which may have resulted from high prosthesis control noise and strategic overreaching with the positional control and underreaching with the myoelectric control. These results provide insights into the relevant factors influencing the improvements conferred by artificial sensory feedback.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Thilina H. Weerakkody ◽  
Thilina Dulantha Lalitharatne ◽  
R. A. R. C. Gopura

The human foot consists of complex sets of joints. The adaptive nature of the human foot enables it to be stable on any uneven surface. It is important to have such adaptive capabilities in the artificial prosthesis to achieve most of the essential movements for lower-limb amputees. However, many existing lower-limb prostheses lack the adaptive nature. This paper reviews lower-limb adaptive foot prostheses. In order to understand the design concepts of adaptive foot prostheses, the biomechanics of human foot have been explained. Additionally, the requirements and design challenges are investigated and presented. In this review, adaptive foot prostheses are classified according to actuation method. Furthermore, merits and demerits of present-day adaptive foot prostheses are presented based on the hardware construction. The hardware configurations of recent adaptive foot prostheses are analyzed and compared. At the end, potential future developments are highlighted.


2013 ◽  
Vol 10 (1) ◽  
pp. 98 ◽  
Author(s):  
John G Buckley ◽  
Alan R De Asha ◽  
Louise Johnson ◽  
Clive B Beggs

2017 ◽  
Vol 17 (7) ◽  
pp. 2182-2190 ◽  
Author(s):  
Armando Ferreira ◽  
Vitor Correia ◽  
Emilia Mendes ◽  
Claudia Lopes ◽  
Jose Filipe Vilela Vaz ◽  
...  

2012 ◽  
Vol 32 (9) ◽  
pp. 3211-3220 ◽  
Author(s):  
E. L. Simoes ◽  
I. Bramati ◽  
E. Rodrigues ◽  
A. Franzoi ◽  
J. Moll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document